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0.1 Lecture 1

Lecture 1 - Tuesday, May 7

Here is an example of outputting “Hello world” in C++ code:

Example 0.1

import <iostream >;
using namespace std;
int main () {

cout << "Hello world" << endl;
}

Result 0.1: Remark about the main() Function

Note that the main() function has to be int (it cannot be void ). Additionally, return for main()
is optional in C++.

Definition 0.1: Double Arrow Operators

1. << is known as the put to operator

2. >> is known as the get from operator

Code 0.1

1. cin , connected with standard input

2. cerr , connected with standard error

int main () {
int x, y;
cin >> x >> y;

}

Remind: It is important to note that cin always stops at the whitespace.

Result 0.2: Some General Questions

If we pass in a number that is too large, then the value for x or y (or both) would be set to the largest
integer possible. If we pass in text values rather than integers, then the program will fail because it
cannot recognize the type of our input. A way to test if out input is legit is to use the cin.fail()
function.
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Code 0.2

Here are three ways to check the status of the input stream:

1. cin.fail()

2. cin.eof()

3. cin.bad()

Here is another example:

Example 0.2

import <iostream >;
using namespace std;
int main () {

cin >> i;
while (true) {

cin >> i;
if (cin.fail ()) break;
cout << i << endl;

}
}

Discovery 0.1

Instead of passing cin.fail() into the if statement, we can also choose to pass in a bool -type
value, cin , which is another built-in feature.

0.1.1 Basic C++ Types with Their Sizes

Result 0.3

bool: 8 bits
char: 8 bits
short: 16 bits
int: 32 bits
long: 64 bits
long long: 64 bits

float: 32 bits
double : 64 bits
long double : 128 bits
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unsigned char: 8 bits
unsigned short: 16 bits
unsigned int: 32 bits
unsigned long: 64 bits
unsigned long long: 64 bits

0.2 Lecture 2

Lecture 2 - Tuesday, May 9

Discovery 0.2

In C/C++, use << and >> to shift bits, while C++ also uses << and >> for I/O. Why does this
work?
Answer: Function Overloading.

Example 0.3

For bit shifting, we have
2110 >> 310 ⇒ 210

0.2.1 Function Overloading

Definition 0.2: Function Overloading

When the compiler compile, it decides which version of the function to call based upon the number
and/or types of parameters, but not the return values. Therefore, parameters must be unambiguous.

Example 0.4

int operator>>(int, int)

std::istream& operator>>(std::istream& in, char& c)

Discovery 0.3

If reading in 2 ints and “fail”, what happens? (e.g. cin >> x >> y; )
Solution:
Could run out of input (EOF) for either x or y;
or read value is larger than INT MAX or smaller than INT MIN .
or even not an integer;

2
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Discovery 0.4

How can we detect failure?
Solution: std::cin is an instance of std::istream has “state bits” that tell us the condition of
cin . READ FIRST, THEN CHECK.

2

Result 0.4: good(), eof(), fail(), and bad()

We have the following:

1. cin.good() ⇒ true if succeded;

2. cin.eof() ⇒ true if EOF;

3. cin.fail() ⇒ true if either EOF or didn’t get int.

4. cin.bad() ⇒ unrecoverable error.

Remark: Remember that a too big/small integer corresponds to cin.fail()

Definition 0.3: Operator bool()

Refer back to discovery 0.1, std::istream has a function that can convert an istream to a bool.

Example 0.5

In particular, if(cin) ... would work just fine.

It is also important to point out that we can call ! on cin .

Discovery 0.5

bool std::istream::operator !() that returns std::istream::fail() .

Now, we can revise program to “throw away” non-ints, output ints, and stop on EOF.
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Example 0.6

int main () {
int i;
while (true) {

cin >> i;
if (cin.eof ()) break;
else if (cin.fail ()) {

cin.clear ();
cin. ignore ();

} else {
cout << i << endl;

}
}

}
// e.g. 3 a b 1 2 EOF -> would loop 5 times
// it reads 1 and 2 together since
// it reads the longest possible value

0.2.2 Manipulators – <iomanip>

Definition 0.4: Manipulators

C++ has manipulators to format I/O.

Example 0.7

It can be used to

1. print numbers as hexadecimal/octal/decimal, bool alpha, setw, setfill, skipws, noskipws
e.g. cout << hex << value; , and all the subsequent numbers are hexadecimal now, and
this is what we call “sticky”. (Best practice: undo any “sticky” changes.)

Example 0.8: Manipulator

cout << 95 << endl; // prints 95 as a decimal
cout << hex << 95 << endl; // prints 95 as a hex

ˆ manipulator

cout << 15 << endl; // gets printed out in hex
// until client change it back

cout << dec << 15 << endl; // prints 95 as a decimal

9



0.2.3 Strings – <string>

C uses ( const char * ) and ( char * ) where every string terminates with, ‘ \∅ ’, the null character.
Append requires reallocation, so we need to worry about memory leak.
Remark: The library is part of std namespace, so with g++-11 , always import and compile string last.

Example 0.9

import <string >;
int main () {

string s1; // empty string , s1.size () = 0
string s2 = "text" // assign an actual string
cin >> s1; // reads whitespace - delimited word
cout << s2 << s1 << endl; // output
s1 + s2; // append two strings
string s3 = s2 + s2; // valid
string line;
getline (cin , line ); // reads an entire line up to ’\n’ ( exclusive )

// remember that whitespaces are included
}

0.3 Lecture 3

Lecture 3 - Tuesday, May 14

We continue on strings. Recall the example 0.9

Example 0.10: Anonymous Object

void f(std :: string s) {cout << s << endl };
‘‘‘

f(s1); // this is valid
f(std :: string {" Stuart "}); // anonymous object ,

// only exists for the
// span of the call of f

’’’

Definition 0.5: What is a “Stream”

A stream is an abstraction wrapped around input and output. eg. keyboard, files, screen, etc.

We know that C++ already has streams:

1. input i.e. std::cin (std::istream)

10



2. output i.e. std::cout and std::cerr (std::ostream)

Result 0.5

It is perfectly legal to have
std::istream *ip = & std::cin;

0.3.1 Files – <fstream>

Example 0.11: File

// C Version
include <stdio.h>
int main () {

char s [256];
FILE *f = fopen("file.txt", "r");
while (1) {

fscanf (f, "%255s", s);
if (feof(f)) break;
printf ("%s\n", s);

}
fclose (f);

}

// C++ Version
import <iostrem >;
import <fstream >;
import <string >;
using namespace std;
int main () {

string s;
ifstream in{"file.txt"}; // automatically open the

// file in read mode
// in.fail () is true if
// couldn ’t be opened for
// reading

while (in >> s) {
cout << s << endl;

} // by defnition , when we reach here , file is
// closed and both in and s are destroyed
// (they are destroyed in reverse order ).

}
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An std::ifstream can do everything an std::istream can.

Example 0.12: Hint for HW1 Q3

// the following are all legal
std :: istream *ip2 = &in; // legal
void bar(std :: istream * in) {...}

bar (& cin );
bar (&in);
bar (& std :: ifstream {"in.txt"}); // anonymous object

0.3.2 String Streams – <sstream>

Definition 0.6: sstring

Combination of string and stream.

1. std::ostringstream : Used to convert (and possibly concatenate) data that can then be retrieved
as a C-style string.

Example 0.13

int main () {
std :: ostringstream oss;
int num1 = 123, num2 = 456;
oss << " Numbers are: " << num1 << " and " << num2;
std :: string output = oss.str ();
std :: cout << output << std :: endl;
return 0;

}

Example 0.14: int to string

std :: string convertInt2String (int i) {
std :: ostringstream oss;
oss << i;
return oss.str ();

}

2. std::istringstream : Used for input operations from a string.
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Example 0.15

int main () {
std :: string input = "123 456";
std :: istringstream iss(input );
int num1 , num2;
iss >> num1 >> num2;
std :: cout << num1 << num2 << std :: endl;
return 0;

}

Example 0.16: string to int

int covertString2Int (std :: string s) {
std :: istringstream iss{s};
int i = 0;
iss >> i; // iss.fail () if couldn ’t read int
return i;

}

Until we cover exceptions, std::istringstream is the only way to convert a string to an int.
Here is an example of determining whether we actually got an integer as our input.

Example 0.17: Variable Local to if

int i;
while (true) {

cout << "Enter a number : ";
string s;
cin >> s;
if (cin.eof ()) break;
if ( istringstream iss{s}; iss >> i) break;
cout << "I said " << i << endl;

}

13



Example 0.18

string s;
while (cin >> s) {

int n;
if ( istringstream is{s}; is >> n) {

// no clear/ ignore since
// created on every entry to the if
cout << n << endl;

}
} // repeats until EOF , outputting ints

0.3.3 Command-line Arguments

Example 0.19

./pgm abc 123 < file.in 2 > err.txt 1 > out.out .

The part < file.in 2 > err.txt 1 > out.out is bash redirection, it is not part of command-
line, while abc 123 are arguments to the program. The part ./pgm abc 123 is C/C++ “command-line”
arguments.

0.3.4 Read Arguments

Example 0.20: Read Arguments

In C++, argc and argv are parameters of the main function that are used to capture command-line
arguments. As long as I have argument other than the file name, I enter the loop. I basically take the
string and create a anonymous object, and try to read an integer out of it.

// argsSum .cc
import <iostream >;
import <sstream >;
import <string >;
int main(int argc , char* argv []) {

int total = 0;
for (int i = 1; i < argc; i++) {

std :: string arg = argv[i];
if (std :: istringstream {arg} >> n) total += n;

}
std :: cout << total << std :: endl;

}

14



0.4 Lecture 4

Lecture 4 - Tuesday, May 16

0.4.1 Function Overloading

We already saw this when << and >> were used for either bit-shifting or I/O,
eg. int negInt(int i) {return -i;} or bool negBool(bool b {return !b;})

Definition 0.7: What is “overloading”

Some function name used; but parameter list must differ in number and/or parameter types
Remark: Return values are not part of function resolution.

Example 0.21: Here we overload neg() function

int neg(int n) { return -n; }
bool neg(bool b) { return !b; }

int main () {
cout << neg (3) << " " << boolalpha << neg(true) << endl;

}

Discovery 0.6

What if we want a function that either prints the “stem”, one per line, for the specified file name, or
for the file “suite.txt”.
eg. printSuiteFile(); \\ outputs content of “suite.txt”;
eg. printSuiteFile(‘‘stuart.txt’’); \\ outputs “stuart.txt”;

// base implementation
void printSuiteFile ( string fname) {

ifstream in{fname };
for ( string s; in >> s;) {

cout << s << endl;
}

}

// header
void printSuiteFile ( string fname = "suite.txt");
// whenever the function is called without passing in a parameter ,
// the filename "suite.txt" will be passed in automatically

15



The only thing we know the actual number of parameters is at the function call site when we compile.
The compiler generates any missing information using the specified values. This allows the function code
to retrieve the full parameter list of values off of the run-time stack. Otherwise, could try to access missing
information from where it shouldn’t.

Warning: All default values must be placed at the end of the parameter list. The values must be
given in the declaration (if separate compilation).

0.4.2 Struct keyword

- backwards compatible with C
eg. /* C */

Example 0.22

// C
struct node {

int value;
struct node *next;

}
typedef struct node Node;

Node n; n.value = -1; n.next = NULL;

// C++
struct Node {

int value;
Node *next;

}; // semicolon is required in C++

Node n; n.value = -1; n.next = nullptr ;

Discovery 0.7

Why doesn’t this Node definition work?

struct Node {
int value;
Node next;

}

This is a compile error since we are missing the “*”.
While defining the Node type, size (amount of memory to allocate) is unknown. “next” is a

Node, but it doesn’t know size, so we cannot define it.

16



0.4.3 Constants

The old C way uses #define but it isn’t type safe. Meanwhile, C++ uses const keyword.
Remark: We cannot change constant values ever.

Example 0.23

// following the code above
// aggregate initialization
Node n1{5, nullptr };

const Node n2;
n2. value = 5; // NO! compile error

const Node n3{n1}; // copies n1 into n3 ,
// which is immutable

const Node n4{-1, &n1};

0.4.4 Parameter Passing

Recall what we had in CS136, in C, we either pass by value or pass by address(pointer).

Discovery 0.8

If I have

int i;
cin >> i; // reads 4
cout << i; // outputs 4

Why don’t we have “&” anywhere?
C++ introduces “references” as a third parameter passing mechanism.

eg. std::istream& operator >> (std::istream& in, int& value);
A “reference” is a constant pointer that is automatically dereferenced.

0.5 Lecture 5

Lecture 5 - Thursday, May 23

0.5.1 Parameter Passing

Consider the code below:

17



Example 0.24: Pass in a copy

int x{5};
inc(x);
cout << x << endl;

void inc(int n) {
n = n + 1;

}

In the above example, we passed in a copy of x, which is independent to the original x.

Alternatively, we can do the following

Example 0.25: Passing by pointer

int x{5};
inc (&x);
cout << x << endl;

void inc(int *np) {
(*np )++;

}

Here we passing by pointer. In this case, we will get 6 as our output.

Theory 0.1: Reference

int y = 10;
int &z = y; // reference , z is a reference to y,

// (z is another name for y)
z = 12; // now y becomes 12

Result 0.6

References must be initialized, i.e.

int y = 10;
int &z;
z = y;

would gives us an error. Additionally, we cannot change what z is alias of, it behaves like a constant.

Result 0.7

Reference takes no memory.

We can also do the following:

18



Discovery 0.9

int ints [5] = {1, 2, 3, 4, 5};
int &i2 = ints [2];
i2 = 30;

Now, ints[2] has a value of 30.

Therefore, we can have the following

Discovery 0.10

int x{5};
inc(x);
cout << x << endl;

void inc(int &n) {
n = n + 1;

}

This now prints 6 because we passed in the value by reference. n is bound to x at runtime, so that n

is an alias of x.

Example 0.26

cin >> x;

>> is a read function that takes x by reference and therefore can change x.

Definition 0.8

References are like const pointers with automatic dereferencing.

What cannot we do with reference ?

1. Cannot leave them uninitialized:

int &z; // not ok
int &z = y; // ok
int &z = x + y; // not ok

2. Cannot create a pointer to a reference:

int &*x; // this would mean x is a pointer to an
// int reference

3. Cannot create a reference to a reference

4. Cannot create an array of references:

int &r[3] = { x, y, z }; // this is not valid
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What can we do with reference ?

1. Use as function parameters:

void inc(int &z);

0.5.2 Passing Parameters to function using Reference

struct reallyBig {...};

int f( reallyBig rb) {...} // copy of parameter is made ,
// potentially slow

int g( reallyBig &rb) {...} // call by reference , fast
// but g can change rb in the caller

int h(const reallyBig &rb) { // preventing function to update rb
// in the caller

reallyBig rbCopy = rb; // in this way , we can modify rbCopy
}

Discovery 0.11

When passing data to functions, prefer pass-by-const-ref for anything larger than a pointer/ integer,
unless the function needs to make a copy anyways.

Code 0.3

int f(int &n) {...};
f(5); // this is not ok , because n could potentially

// be used to update the literal 5

Alternatively,

int g(const int &n) {...};
g(5); // this is valid , because we are gauranteed

// not to change n

Theory 0.2

Similarly, (with the similar reason), we can have

cin >> x; // we want to change x
cout << x; // we don ’t want to change x,

// thus this is equivalent to
ostream &operator << ( ostream &o, const int &x)

20



0.5.3 Dynamic Memory Allocation

Recall that in C, we have

Code 0.4

int *p = (int *) malloc (10 * sizeof (int )); // allocate array of
// 10 ints on heap

p[0] = 10;
p[1] = 20; ...
free(p);

In C++, we have new and delete instead:

Code 0.5

struct Node {...};
Node *np = new Node; // returns a pointer to the object ,

// it is type -safe ,
// it allocates memory from heap

delete np; // returns memory to the heap

Physical Memory Model

code programs that are loaded and executing
static data literals / global variables

free store (heap) memory for new operations

stack function arguments, local storage

np

stack

Node

heap

Example 0.27

We can also create an array of 10 Node objects:

Node * nodeArray = new Node [10];
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Result 0.8

In this case, when we call delete, we have to

delete [] nodeArray ; // tells delete operator that
// nodeArray is an array ,
// Note that we don ’t have to
// specify how big is the array

Theory 0.3

Memory allocated with new must be deallocated with delete ; or
Memory allocated with new must be deallocated with delete [] .

0.6 Tutorial 1

See the question at
CS246 - 2024S/T/tutorial01.pdf

Solution:

# include <iostream >
# include <string >
# include <sstream >
using namespace std;

int main () {
int lenList [2];
lenList [0] = 2147483647;
lenList [1] = 0;
string stringList [2];

string line;

while ( getline (cin , line )) {
string s;
int length = 0;
istringstream iss(line );

while (iss >> s) {
length ++;

}

if ( length < lenList [0]) {
lenList [0] = length ;
stringList [0] = line;

}
if ( length > lenList [1]) {

lenList [1] = length ;
stringList [1] = line;

}
};

cout << stringList [0] << endl;
cout << stringList [1] << endl;

return 0;
}

Result: 14/14.

0.7 Lecture 6

Lecture 6 - Tuesday, May 28
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Pass by reference is a very powerful mechanism. We can have a function operates directly on an
object we pass by reference:

Example 0.28

void swap( double &d1 , double &d2) {
double temp = d1;
d1 = d2;
d2 = temp;

}
double x = 5;
double y = 10;
cout << x << ", " << y << endl; // 5, 10
swap(x, y);
cout << x << ", " << y << endl; // 10, 5

Note: the standard library also provides a swap function, which works for any data type.

0.7.1 Returning Values from Functions

– – – Returning by Value:

Node getNode () {
Node n;
...;
return n; // Node created in the function is copied into n1

}
Node n1 = getNode ();
// " Expensive ", return by value ,
// we will see shortly that this is not so expensive after all

Discovery 0.12

Can we avoid the overhead of copy by returning a pointer or a reference instead?

– – – Returning by Pointer Version:

Node * getNodePtr () {
Node n;
...;
return &n;

}
Node *n1 = getNodePtr (); // this returns pointer to stack -

// allocated data , which is dead on return
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– – – Returning by Reference Version:

Node & getNodeRef () {
Node n;
...;
return n;

}
Node &n1 = getNodeRef (); // BAD! Returning a reference to stack -

// allocated data , which is dead on return

– – – Returning by Pointer Version (Heap):

Node * getNodePtrOnHeap () {
Node *n = new Node; // Allocate the Node on heap
...;
return n;

}
Node *n1 = getNodePtrOnHeap (); // GOOD! the object is alive

// until we delete it

Result 0.9

We have to remember to call delete, the function transfers the ownership of the allocated memory
to the caller of the function. That caller is responsible for calling delete (or its own caller).

Theory 0.4

Never call delete on a stack-allocated (local) object.

Example 0.29

void f() {
Node n;
...;
delete n; // BAD! won ’t even compile

// because delete takes in a pointer
delete &n; // BAD! n is in stack. Compile warning
int a[10]; // a is actually a int*
delete a; // BAD! a is in stack

}
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0.7.2 Operator Overloading

This allows us to use built-in operator with user-defined types we create.

struct Vec {
int x, y;

}
vec v1 = {1, 2};
vec v2 = {4, 5};
vec v3 = v1 + v2;
vec v4 = 5 * v3;

Vec operator + (const Vec &v1 , const Vec &v2) {
Vec v {v1.x + v2.x, v1.y + v2.y};
return v;

} // notice that we pass in by reference

Vec operator * (const Vec &v, const int k) {
return {v.x * k, v.y * k};

}
Vec operator * (const int k, const Vec &v) {

v * k
}

Theory 0.5

1. We cannot change operator precedence;

2. Operator must have at least one user-defined type parameters. i.e. cannot override 1 + 2.

3. Cannot change the syntax of how the operators are used;

4. Cannot create new operators like and $, can only overload existing operators

5. cannot overload

(a) scope resolution operator :: , (e.g. std::cout );

(b) member selector . , (e.g. v.x );

(c) dereference operator * , (e.g. *p );

(d) ternary operator ? ; , (e.g. x==1 ? true ; false ).

We can also do the following:

Example 0.30: Overload << Operator

ostream &operator << ( ostream &out , const Vec &v) {
out << "(" << v.x << ", " << v.y << ")" << endl;
return out;

}
Vec v1 = {5, 10};
cout << v1 , // (5, 10)
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Example 0.31: Overload >> Operator

istream &operator >> ( istream &in , Vec &v) {
char p1 , c, p2;
in >> p1 >> v.x >> c >> v.y >> p2;
return in;

}

It is common to overload other arithmetic operators too. There are shortcuts that let us implement
a bunch of these with one function, we will explore later.

Discovery 0.13

Why is it okay for operator<< to return an ostream& ?
Answer: The out varaible we return is the same reference that we pass in, and it refers to an object
that exists somewhere other than the stack. This object has a longer life.

0.7.3 Separate Compilation

This allows us to split programs into modules where each module provides two things:

1. an interface:

(a) type definitions

(b) function prototypes

2. an implementation: full definitions for every provided function

Recall:

Code 0.6

1. Declaration: asserts the existence of a type, function, global variable, gives it a name;

2. Definition: full details of a type or function; allocates space for variables and function bodies.

Example 0.32

int f(int a, string b);
int f(int a, string b); // declrations can be repeated , but

// they need to be the same every time
extern string params ;
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0.8 Lecture 7

Lecture 7 - Thursday, May 30

Recall definitions:

int f(int a, string b) {...};
string params = "0, 5, abc";
struct Node {

int data;
Node *next;

};

Discovery 0.14

An entity can be declared many times, but can only be defined once.

Code 0.7: Modules, Interface, Implementation

// Vec interface file (vec.cc)
export module vec; // indicates that this is the module interface

// file , we can have only one such file
export struct Vec { // anything marked export is made available

int x, y; // to the client of the module to use
};
export Vec operator +( const Vec &v1 , const Vec &v2);

// vec implementation file (vec -impl.cc)
module vec; // this file is part of module vec.

// we can have multiple implementation files
// Don ’t need to import vec , compiler implicitly
// imports the interface .

Vec operator +( const Vec &v1 , const Vec &v2)
return {v1.x + v2.x, v1.y + v2.y} // we don ’t need to export

// this , already exported
// in the interface file
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Result 0.10

You can have types, functions, etc. that are used internally by the module hidden from the user of the
module. For instance

int helper () {...}; // not exposed to users of module
// because it is not exported

Code 0.8: Client Program

// client program (main.cc)
import vec; // no <> because this is a user -module ,

// not a system module

Theory 0.6

Interface files start with export module ;
Implementation files start with module ;

To compile, we need to follow the dependency order:

Code 0.9

g++20m -c vector .cc // creates vector .o
g++20m -c vector -impl.cc
g++20m -c main.cc

g++20m vector .o vector -impl.o main.o -o main
// links the programs and creates the executable

Theory 0.7

A module itself can import the modules it needs for its own implementation.
Repository provides a bash script called compile in the tools directory if students want to

partially automate compilation.

0.8.1 Benefits of Modules over Header File

1. Faster compilation. The module interface file is compiled only once and used many times

2. If a module A imports module B to use as part of its implementation, the contents of B are not exposed
to users in any order

28



3. Modules can be imported in any order

4. Non-exported implementation details (like helper functions) are not visible outside the module

5. We can use modules and header files together †.

0.8.2 Classes

We can put functions inside structs.

Definition 0.9: Class

We call structs with functions classes.

Example 0.33

// student .cc
export module student ;
export struct Student {

int hw , mt , final;
float grade ();

};

// student -impl.cc
float Student :: grade () {

return hw * 0.4 + mt * 0.2 + final * 0.4;
}

// client code
import student ;
Student s {60, 70 , 80};
cout << s.grade () << endl;

Definition 0.10: Class, Object, Method/Member Function, Scope Resolution Operator

Class is essentially a structer type that can contain functions.
Object is an instance of a class.

Student s {60, 70 , 80};
ˆ ˆ ˆ

class object initialization list

grade is called a method or a member function, while :: is called a scope resolution operator.

Recall
†In this course, stick to one or the other, but not both
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float Student :: grade () {
return hw * 0.4 + mt * 0.2 + final * 0.4;

}

The parameters are fields of the receiver object, the object of which grade() is called.

s.grade (); // s is the receiver object
// uses the values in object s

Theory 0.9: “this”

float Student :: grade () { // this function actually has a
// hidden parameter called this ,
// a pointer to the receiver object

return this ->hw * 0.4 + this ->mt * 0.2 + this ->final * 0.4
}

Theory 0.9

Compiler inserts “this” automatically.

We can also define the grade() function right inside the struct (not encouraged) because the code
ends up being inlined wherever it is used.

Discovery 0.15

Student s;
Student *p = &s ; // &s is equivalent to this

// inside the method body.

0.8.3 Initializing Objects

Recall

Example 0.34

Student s = {60, 70, 80}; // uses the order of the
// fields in Student

A better way to initialize objects is to use a Constructor (sometimes we write ctor for convenience).

0.9 Tutorial 2

CS246 - 2024S/T/tutorial02.pdf

Solution:
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// Fill in the return type and arguments
istream &operator >>( istream &in , FriendList &fl) {

// Fill in this operator overload
if (fl.size < 8) {

in >> fl. friends [fl.size ];
fl.size ++;

}
return in;

}

// Fill in the return type and arguments
ostream &operator <<( ostream &out , const FriendList &fl) {

// Fill in this operator overload
out << "I have " << fl.size << " friend (s). They are:" << endl;
for (int i = 0; i < fl.size; i++) {

out << fl. friends [i];
if (i < fl.size - 1) out << ", ";

}
out << endl;
return out;

}

// For operator -, argument and return types are given
FriendList operator -( const FriendList & fl , int index) {

FriendList nfl;
if (index < 0 || index >= fl.size) {

nfl = fl;
} else {

nfl.size = fl.size - 1;
for (int i = 0, j = 0; i < fl.size; i++) {

if (i != index) {
nfl. friends [j] = fl. friends [i];
j++;

}
}

}
return nfl;

}

Result: 4/4.

0.10 Lecture 8

Lecture 8 - Tuesday, Jun 4
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Code 0.10

struct Student {
int hw , mt , final;
float grade ();
Student :: Student (int hw , int mt , int final ); // constructor

} // same name as the class
// can be defined with 0 or more parameters that can be used
// to initialize new objects
// no return type , not even void

Student :: Student (int hw , int mt , int final) {
this ->hw = hw; // this is needed to tell compiler
this ->mt = mt; // which hw we are refering to.
this ->final = final;

}

Student s{60, 70, 80}; // cause constructor to run , the values
// are passed to the constructor function

Student s = Student {60, 70, 80};
Student s = Student (60, 70, 80); // this is not recommended
Student s = {60, 70, 80};

Result 0.11

The above programs are all equivalent.

To create the Student on heap, we do:

Code 0.11

Student *sptr = new Student {60, 70, 80};
...;
delete sptr; // don ’t forget to delete .
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Definition 0.11: What are the advantages of a constructor?

1. They are functions, so we can write arbitrarily complex initialization code;

2. We can have default parameters;

3. We can use overloading;

4. We can do validation for sanity check;

5. Ensures out object are initialized properly and that the object is logically valid.

Example 0.35: Default Values Example

Student :: Student (int hw =0; int mt =0; int final =0) {
this ->hw = hw;
this ->mt = mt;
this ->final = final;

}
Student s2{60, 70, 80}; // this is valid now
Student s3; // this is valid now

Theory 0.10: What if we don’t write a constructor

Every class comes with a default constructor, default-constructs all fields that are objects.
If you write any constructors, the default goes away.

Code 0.12

struct Vec { struct Basis {
int x, y; Vec v1 , v2;
Vec(int x, int y) { }

this ->x = x; Basis b;
this ->y = y; ˆ

} // this wont ’t compile
}; // because Vec doesn ’t have
Vec v; // Error // a constructor that takes
Vec v{1, 2}; // ok // no parameters
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How about this case?

Code 0.13

struct Basis {
Vec v1 , v2;
Basis () {

v1 = Vec {0, 1};
v2 = Vec {0, 2};

}
};
Basis b;

This also doesn’t compile, the following theorem is the reason why.

0.10.1 Object Creation Steps

Theory 0.11: Object Creation Steps

When an object is created, there are three steps:

1. Space is allocated;

2. Fields are constructed in declaration order; (constructor tuns for the fields that are objects);

3. Constructor body runs.

The initialization of v1 and v2 must happen in step 2. But in reality, in the above code, the reason
why it does not work is that it instead takes place in step 3. How can we accomplish that then?

MIL is the answer.

Definition 0.12: Member Initialization List (MIL)

Student :: Student (int hw , int mt , int final)
: hw{hw}, mt{mt}, final{final} {...}

ˆ ˆ
fields | | values

\ ______________ _____________ /
MIL

Theory 0.12

MIL runs in step 2.
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Result 0.12

MIL must be in the definition of the constructor, it cannot be in the declaration.

Example 0.36

Refer back to the example we had above, it should instead be like

Basis :: Basis : v1{v1}, v2{v2} {...};
\ ______ _____/ \_ _/

Step 2 Step 3

0.10.2 Default Values in struct

Example 0.37: Default Values in struct

struct Basis {
Vec v1{0, 1}; // If MIL doesn ’t mention a field ,
Vec v2{0, 2}; // these are used instead
Basis () {...}; // uses default values
Basis(const Vec &v1 , const Vec &v2) : v1{v1}, v2{v2} {...};

} // uses parameters
Basis b; // uses default ;
Basis b{Vec {0, 1}, Vec {0, 2}}; // uses parameters

Theory 0.13

With a MIL, the fields are initialized in declaration order, not in the order provided in MIL.

Consider the following code:
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Code 0.14

struct Student {
int hw , mt , final; // not object
string name; // object
Student (int h, int m, int f, const string &n) {

hw = h;
mt = m;
final = f;
name = n;

} // runs during step 3, it’s actually overwriting the
// default empty string that was stored in name during

} // step 2. Reassignment .

Instead, we should have

Code 0.15

Student (int h, int m, int f, const string &n)
: hw{h}, mt{m}, final{f}, name{n} {...}

// here n is initialized from n in step 2
// this is more efficient ! No reassignment in step 3

Theory 0.14

MIL must be used

1. for fields that are objects with no default constructor;

2. for fields that are const or references, those must be initialized in step 2

Example 0.38

We can use field in MIL that were initialized earlier too:

: x{rand ()}, y{x} {...}; // valid
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0.11 Lecture 9

Lecture 9 - Thursday, Jun 6

0.11.1 Copy Constructor

The copy constructor constructs one object as a copy of another. The goal of copy constructor is to create
an independent copy of the object so that data is shared between the objects.

Code 0.16: Writing our own copy constructor for Student

struct Student {
int hw , mt , final;
Student (const Student &other)

: hw{other.hw}, mt{other.mt}, final{other.final} {...}
}
// this is equivalent to the built -in copy constructor
Student s1{60, 70, 80};
Student s2 = s1; // this invokes the copy constructor

Theory 0.15

Every class comes with a default copy constructor.

Example 0.39

If we were to code the default copy constructor ourselves, for Vec it would look like this:

struct Vec {
int x, y;
Vec(const Vec &other) : x{other.x}, y{other.y} {}

}

Remark: Use either the MIL or the constructor body to copy the data from other into the new
object.

Why would we need a copy constructor if the compiler always provides a default one?
Answer: Consider the case when there is a pointer. We do not want them to point the same thing!

Built-in copy constructor does a shallow copy. If we want a deep copy, we must implement out own copy
constructor. The new one will then replace the built-in one.
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Code 0.17

struct Node {
int data;
Node *next;

}
Node *n = new Node {1, new Node {2, new Node {3, nullptr }}};
Node m = *n; // this calls copy constructor implicitly
Node *p = new Node {*n}; // calls copy constructor explicitly

For the code above, we have the following diagram illustrating what exactly is happening:

Discovery 0.16

The problem here is that the default copy constructor did not create independent copies.

To solve the issue, we need to write our own copy constructor:

Code 0.18

Node(const Node &other)
: data{other.data},

next{other.next == nullptr ? nullptr : new Node {* other.next }}

This code recursively copies the rest of the list.

Definition 0.13: Implicit Call of Copy Constructor

The copy constructor is implicitly called when

1. an object is initialized with another object of same type;

2. an object is passed by value to a function;

3. an object is returned by value from a function (the truth is somewhat nuanced).

Theory 0.16

Consider the following code,

Node(const Node other) {...}

why is it wrong?
Answer: We are passing other by value, which ends up calling the copy constructor recursively.
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0.11.2 Copy Constructor that Takes Just One Parameter

Code 0.19

struct Node {
...
Node (int data) : data{data} next{ nullptr } {}
Node (int data , Node *next = nullptr ) : data{data}, next{next} {}

}
Node n = {1}; // valid
Node m = {1, nullptr }; // valid
Node p = {1, new Node {2}}; // valid

The above are all legit, but the problem with single-arg copy constructor is that they create implicit
recursions. Why is that a problem?

Example 0.40

int f(node n);
f(4);

Danger: Accidentally passing an int to a function that expects a Node causing silent conversion. This
potentially causes errors that aren’t caught (not signaled by the compiler).

Definition 0.14: Explicit

The solution to it is to disable the implicit conversion. In other words, make the constructor explicit
by using the explicit keyword.

Example 0.41

struct Node {
explicit Node(int data , Node *next = nullptr )
: data{data}, next{next}

}

After adding the keyword explicit , we have

Node n{4}; // valid
Node n = 4; // Error
f(4); // Error
f(Node {4}); // valid
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Result 0.13

It is a good practice that when having a single-arg copy constructor, label it explicit to avoid implicit
conversions.

0.11.3 Destructors

Definition 0.15

When an object is destroyed (stack-allocated: out of scope; heap-allocated: deleted), a method called
destructor runs.

Theory 0.17: Three Steps of Destructors

Class always comes with a default destructor, which invokes the destructors of all fields that are objects.
When an object is destroyed, there are three steps:

1. Destructor body runs;

2. Fields’ destructors run in reverse declaration order (for fields that are objects);

3. Space deallocated.

When do we need to write our own destructor?

Code 0.20

Consider

Node *np = new Node {1, new Node {2, new Node {3, nullptr }}}

if np goes out of scope, the pointer is reclaimed, the list is thus leaked. If we say delete np, the
first node is reclaimed ( *np ’s destructor is called), which does not do anything (because it is not an
object).

The solution to it is writing our own destructor:

Code 0.21

struct Node {
...
˜Node () {

delete next;
}

}
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Result 0.14

The Node class is responsible for freeing memory.

Theory 0.18

A class has only one destructor method. Cannot have multiple destructors in one class.

Discovery 0.17

Recall the exit() function. It terminates the program immediately, so none of the destructors run.

†

0.11.4 Copy Assignment Operator

Definition 0.16

A copy assignment operator is not a constructor, it overrides the = assignment operator.

Code 0.22

Student s1{60, 70, 80}; // calls the constructor
Studetn s2 = s2; // calls the copy constructor
Student s3; // calls the constructor
s3 = s1; // copy but not construct the object ,

// this is called copy assignment .

Discovery 0.18

Copy assignment operator starts with a fully constructed object from earlier.

†Not deallocating the memory allocated is considered an incorrect program in the course (might be legit in reality).
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0.12 Lecture 10

Lecture 10 - Tuesday, Jun 11

The goal of copy assignment is to replace the data in the object with a copy of the data from the
other object, without introducing memory leaks. The compiler provides a default copy assignment operator
that we can replace.

Code 0.23

struct Node {
int data;
Node *next;
...
Node & operator =( const Node &other) {

data = other.data;
next = other.next ? new Node (* other.next) : nullptr ;

ˆ copy constructor
return *this.

}
};

But we might have a memory leak here because the Node might have its own next before assignment.
Therefore, we need to delete it first.

Code 0.24

Node & operator =( const Node &other) {
data = other.data;
delete next; // free any existing node list

// we are pointing to
next = other.next ? new Node (* other.next) : nullptr ;

ˆ copy constructor
return *this.

}

We couls also have self assignmnet:
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Example 0.42: Self-assignment

Node n ...
...
n = n; // self - assignment

To fix the issue that we are deleting the next before assigning we encounter in self-assignment, we
simply just need to insert another line of code:

Node & operator =( const Node &other) {
if (this == &other) return *this; // protects against self - assignment
data = other.data;
next = other.next ? new Node (* other.next) : nullptr ;

ˆ copy constructor
return *this.

}

Discovery 0.19

Instead of doing this == &other , would *this == other work?
Answer: No, because you could have two with the same data that would be equal, but this is not a
self-assignment. Secondly, you do not get == for free, you have to code it yourself.

Result 0.15

A better implementation is (no problem):

struct Node {
...
Node & operator =( const Node &other) {

if (this == &other) return *this;
Node *temp = other.next ? new Node (* other.next) ; nullptr
data = other.data;
delete next;
next = temp;
return *this;

}
}

This version insures that if new fails, we do not change our object (cuz we haven’t touched it yet). In
particular, if new fails, we exit the function immediately (more about except later in the course).

0.12.1 Copy-and-Swap Idiom
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Code 0.25: Alternative using copy and swap

import <utility ;

struct Node {
...
void swap(node &other) {

std :: swap(data , other.data );
std :: swap(next , other.next );

}
Node & operator =( const Node &other) {

Node temp = other; // step1 , copy via copy ctor
swap(temp ); // step2 , new temp has old values
return *this;

}
}

1. Step1: deep copy other to construct temp

2. Step2: after step 2, temp has the old values from our object. When operator= function exists,
temp will be destroyed taking our old data with it.

Theory 0.19

For copy-and-swap, the self-assignment test is not needed, but it would be an optimization.

Discovery 0.20

The reason why we return *this is that this allows us to do cascading assignment:

n1 = n2 = n3 = n4 = n5; // makes n1 .. n4 the same as n5

0.12.2 Move Constructor and Move Assignment Operator

Consider the program that looks like the following:
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Example 0.43

Node oddsOrEvens () { \\ returns a Node object by value
Node odds {1, new Node {3, new Node {5, nullptr }}};
Node evens {2, new Node {4, new Node {6, nullptr }}};
char c;
cin >> c;
return c == "0" ? evens : odds;

}
Node n = oddsOrEvens (); // copy constructor
Node m;
m = oddsOrEvens (); // copy assignment operator

Copy constructor/ copy assignment operator are used to copy the data from oddsOrEvens into n or m.

Result 0.16

We can actually steal the data from the temporary odds/ evens objects instead of copying them.
The move constructor and move assignment operator allow us to do it.

Code 0.26: Move Constructor

struct Node {
...
Node(Node && other) // rvalue reference (a reference

// to a temporary object )
: data{other.data}, next{other.next} {

other.next = nullptr ;
}

}

The temporary Node other will still have its destructor called, but since its next field is now nullptr,
the destructor doesn’t free anything. The temp object can be destroyed simply and efficiently. No
copying of nodes was needed.

Code 0.27: Move Assignment Operator

struct Node {
...
Node & operator =( Node && other) {

swap(other ); // same swap used for the copy assign op.
return *this; // with the copy -and -swap idom
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}
}

The temporary Node other will still have its destructor called, but since its next field is now nullptr,
the destructor doesn’t free anything. The temp object can be destroyed simply and efficiently. No
copying of nodes was needed.

Theory 0.20: How is move different from copy

1. Other parameter is not const because we need to steal from it and make it “empty”. Or we can
swap our data into it (for assignment).

2. Other is an rvalue reference type parameter.

3. It is simpler to write a move operator than a copy operator.

Theory 0.21

If you dont define move constructor/ assignment operator, the compiler will use the copy operations
when the argument is a temporary object.

Now

Node n = oddsOrEvens (); Node m;
m = oddsOrEvens ();

uses the move constructor (we didn’t have to change the function or the code) and move assignment operator
respsectively.

Discovery 0.21

Bottom line, returning objects by value from a function is often very fast and efficient.

Result 0.17: Rule of Five (Big Five)

In summary, we can now state the Rule of Five (or the Big Five): If you need to write any one of the
following, you usually need to write all five:

1. destructor;

2. copy constructor;

3. copy assignment operator;

4. move constructor;

5. move assignment operator.

But note that many classes don’t need any of these. The default implementations are good enough.
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0.13 Tutorial 4

CS246 - 2024S/T

0.14 Lecture 11

Lecture 11 - Thursday, Jun 13

0.14.1 Copy/ Move Elision

Code 0.28

Vec makeAVec () { // return by value
return {0, 0}; // uses the default ctor to create a Vec

}
Vec v = makeAVec (); // copy or move ctor depending on

// whether we have a move ctor

Theory 0.22

In certain cases, the compiler is required to skip calling the calling the copy/ move constructors. Here,
makeAVec() writes its result directly into the space occupied by v in the caller rather than copying

it later.

Here is a slightly more complex example:

Code 0.29

void doSomething (Vec v) {
...

}
doSomething ( makeAVec ());

Theory 0.23

What is happening here is that the result of makeAVec() is written directly into the parameter v of
doSomething() . There is no copy or move.

Result 0.18

Elision happens even if dropping the constructor calls would change the behaviour of the program.
For an instance, if the constructors print something while called, if an elision happens, nothing will be
printed. Note: you are not expected to know when it happends, rmbr that it could happen.

47



0.14.2 Member Operators

Notice operator= was a member function and not a stand-alone function. Previous operators we’ve written
were stand-alone functions.

Definition 0.17: Stand-alone Function

Recall that we have

struct Vec {
int x, y;

}
Vec operator +( const Vec &v1 , const Vec &v2) {

// stand -alone function , doesnt have access to ‘this ’
}

To write it as a member function, we have

struct Vec {
int x, y;

Vec operator +( const Vec &other) {
return {x + other.x, y + other.y};
// doesnt have to say this ->x, but we can

}
Vec operator *( const int k) {

return {x * k, y * k};
}

}

However, notice that operator* cannot be a member function because we cannot implement the case
when we have a vector to the right side of the integer, (i.e, k * v), therefore, we need to implement the
operator* as a stand-alone function.

Example 0.44: Implement +=

Vec & operator +=( Vec &v1 , const Vec &v2) {
v1.x += v2.x; // normal int += operator , no recursion .
v1.y += v2.y;
return v1;

}

This is an example of a stand-alone function, but we can indeed change this into a member function.
Now we can write the regular operator+ version in terms of the += operator:
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Code 0.30

Vec operator +( const Vec &v1 , const Vec &v2) {
Vec temp(v1); // use copy constructor
return temp += 2; // use above operator += to modify / return temp

}

Discovery 0.22

Suppose we wrote our ostream operator« as a member function as following

struct Vec {
...
ostream &operator <<( ostream &out) {

out << x << ’, ’ << y;
return out;

}
};

Notice that in this case, we would then need to write

v << cout;

which is a bit awkward.

Result 0.19

herefore, as a result, define operator<< and operator>> as stand-alone.

Discovery 0.23

Also notice that some operators must be members:

1. operator= ;

2. operator[] ;

3. operator-> ;

4. operator() .

Vec :: operator =(...) // if member function defined
// outside the struct
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0.14.3 Arrays of Objects

Let’s say that Vec is defined as:

Code 0.31

struct Vec {
int x, y;
Vec(int x, int y) : x{x}, y{y} {} // replaces the default

// no -arg constructor
};
Vec v; // won ’t work
Vec v{5, 4}; // will work

Now we would have:

Vec vectors [15]; // error
Vec *vp = new Vec [15] // error

The reason why the above two lines of code don’t work is that each of the vector in the array of
vector(s) needs to be constructed. The compiler will try to default construct each of them, which will
fail (default constructor is replaced).

Definition 0.18: How to solve

To fix it, we have several options:

1. Create a default constructor for Vec:

(a) Create a new constructor; or

(b) Make x and y parameters have default values.

2. For stack arrays, we can also do:

Vec vectors [15] = {Vec {0, 1}, ..., Vec {0, 15}};

3. For heap arrays, we can create an array of pointers:

Vec **vp = new Vec *[15]; // fine , but the pointers are uninitialized
vp [0] = new Vec {0, 0};

Do not forget to delete each of the vectors in the array and the array itself at the end.

Theory 0.24

Btw, you can initialize arrays of built-in types easily:

Vec **vp = new Vec *[15] = { nullptr };

The compiler initializes the whole array with \0 .
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0.14.4 Const Objects

Example 0.45

struct Student {
...
float grade () {

...
}

}
int f(const Student &s) { // const objects arise often ,

// especially as parameters
}

const objects cannot be modified, the compiler guarantees this. Additionally, we cannot call the
methods of s because the compiler does not know whether those methods modify our objects, so it
does not compile.

Theory 0.25

Therefore, in order to be able to call the grade() function, we need to write this instead:

struct Student {
...
float grade () const {

...
}

}

If defined outside (the struct), we need to include the const keyword as well.

The compiler checks that const methods don’t modify fields. In our case, grade is not allowed to
modify any field.

Result 0.20: Const with const

If you have a const object, like s as above, you can only call const methods on it. In other words,
only const methods may be called on const objects. On the other hand, if you have a non- const
object, then anything could be called (even the const ones).
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0.15 Lecture 12

Lecture 12 - Tuesday, Jun 18

0.15.1 Logical vs. Physical Constness

Code 0.32

struct Student {
mutable int numMethodCalls = 0;

float grade () const {
++ numMethodCalls ;
return ...

}
}

Theory 0.26

The mutable numMethodCalls fields affects only the physical constness of the object, not its logical
constness. Mutable fields can be changed even if the object is const. Use mutable to indicate that a
field does not contribute to the logical constness of the object.

Definition 0.19: Physical vs. Logical Constness

1. Physical Constness: whether the actual bits/ bytes that make up the object have changed;

2. Logical Constness: whether the updated object should logically be regarded as different after the
update.

0.15.2 Comparing Object

Code 0.33

This is how we compare in C, where s1 and s2 are char pointers.

strcmp (s1 , s2) returns <0 if s1 < s2
=0 if s1 = s2
>0 if s1 > s2

In C++, we can use the three way comparison operator<=> (aka. the spaceship operator):

Code 0.34

import <utility >;
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string s1 , s2;
std :: strong_ordering result = s1 <=> s2; // one comparison
if ( result < 0) cout << "less";
else if ( result == 0) cout << "equal";
else cout << " greater ";

Theory 0.27

strong ordering actually returns four possible values:

1. less;

2. equal/ equivalent;

3. greater.

Normally, we could write

if ( result == std :: strong_ordering :: less) // same as result < 0

Definition 0.20: Auto

There is a shortcut:

auto result = s1 <=> s2;

This uses auto keyward, so the compiler automatically deduces the type (replaces std::strong ordering ).

0.15.3 Defining <=> for our own Classes

Code 0.35

struct Vec {
int x, y;

auto operator <=>( const Vec &other) const {
auto n = x <=> other.x;
if (n != 0) return n;
return y <=> other.y;

}
}
Vec v1{1, 0};
Vec v2{1, 3};
v1 <=> v2; // strong_ordering :: less
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// by implementing <=>, we get all other comparison operators for free
v1 <= v2 => (v1 <=> v2) <= 0
v1 == v2 => (v1 <=> v2) == 0
v1 > v2 => (v1 <=> v2) > 0

Discovery 0.24

You can sometimes even get the <=> operator for free:

auto operator <=>( const Vec &other) const = default ;

This just does the lexicographic comparison on the fields of Vec , which is equivalent to what we just
wrote.

What about Node ? What does it mean for a Node object to be equal to, less than, or greater than
the other one?

struct Node {
int date;
Node *next;

}

Algorithm 0.1

1. Step 1: Compare data, if not equal, the one with the less value should be less

2. Step 2: Compare next fields, but we need to consider four cases:

(a) Both next == nullptr, we return equal;

(b) node1.next == nullptr and node2.next != nullptr, we return node1 less than node2;

(c) node1.next != nullptr and node2.next == nullptr, we return node1 greater than node2;

(d) node1.next != nullptr and node2.next != nullptr, we advance to the next node and repeat.

Code 0.36

struct Node {
auto operator <=>( const Node &other) const {

// step 1
auto n = data <=> other.data;
if (n != 0) return n;
// step 2
if (! next && !other.next) return n; // case (a)
if (! next) return std :: strong_ordering :: less; // case (b)
if (! other.next) return std :: strong_ordering :: greater ; // case (c)
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return *next <=> *other.next; // case (d)
//ˆ recursive call to next nodes in both lists

}
}

0.15.4 Invariants and Encapsulation

Consider

Example 0.46

struct Node {
int data;
Node *next;
...
˜Node () { delete next };

}

Suppose our user does this:

Node n1 {1, new Node {11, nullptr }};
Node n2 {2, nullptr };
Node n3 {3, &n2}; // n3’s dtor will try to delete n2 ,

// undefined bahaviour

The Node class relies on the assumption that next is either nullptr or was allocated by new (on
the heap).

Definition 0.21: Invariant

The above assumption is an example of an invariant, which is a statement that must hold true (upon
which Node relies).

However, we cannot gaurantee this invariant, we cannot trust the client to use Node properly, because
we are exposing the next field, allowing clients to manipulate it directly.

It’s hard to reason about programs if you cannot rely on invariants.

Theory 0.28: Encapsulation

To force invariants, we introduce encapsulation – we want clients to treat our objects as black boxes
(capsules). In this way, it creates abstractions in which implementation details are hidden or sealed
away such that clients can only manipulate them in provided methods.

The following is an example:
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Example 0.47

struct Vec {
private : // whatever follows is private ,

// which cannot be accessed outside Vec
int x, y;

public :
Vec(int x, int y) : x{x}, y{y} {}
Vec operator +(...) {}

};

Theory 0.29

By default access to members of a C++ class declared with the keyword class is private.

Result 0.21

The only difference between struct and class is the default visibility.

Let’s fix out linked list example by introducing encapsulation: The key is to create a wrapper class
List that has exclusive access to the underlying Node objects.

Example 0.48

Code 0.37: list.cc

export class List {
struct Node; // forward declaration , private nested class

// only accessible inside List
Node * theList = nullptr ;
public :

void addToFront (int data );
int ith(int i) const;
˜List ();

};
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Code 0.38: list-impl.cc

struct List :: Node { // nested class
int data;
Node *next;
Node(int data , Node *next) : data{data}, next{next} {}
˜Node () { delete next };

};

List ::˜ List () { delete theList ;}
List :: addToFront (int data) { theList = new Node{data , theList };}
int List :: ith(int i) const {

Node *cur = theList ;
for (int j = 0; j < i; j++, cur = cur ->next) {

return cur ->data;
}

}
// only List can manipulate Node objects ,
// so we can gaurantee the invariant that
// next is always a nullptr or alloced by new.

0.16 Lecture 13

Lecture 13 - Thursday, Jun 20

0.16.1 Iterator

Definition 0.22: Iterator

Iterator allows us to easily and efficiently iterate the items in the list. Iterations is a common pattern
in programming. C++ has a standard way that iteration works. The general idea is to create a new
Iterator class that gives us access to the nodes.

1. It is an abstraction of a pointer;

2. It let us walk the list without exposing the actual pointers.

It works like this

Theory 0.30: How Iterator Works

1. The List class has a method called begin() that creates and returns an iterator object that
points to the first node.

2. Using this iterator object, you can access the data in the node,
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3. You can also advance the iterator so that it points to the next node.

4. The List class also has en end() method that creates and returns an iterator object pointing to
one position past the last node.

5. When your iterator equals the iterator returned by end() , you reach the end of the list.

Code 0.39

Here is an example:

int main () {
List list;
lst. addToFront (1);

(2);
(3);

List :: Iterator it = lst.begin (); // create iterator object
while ( it != lst.end () ) { // check if we’ve reached the end

cout << *it << endl; // access the date using iterator
++it; // advance the iterator

}

// for loop version :
for ( auto it = lst.begin (); it != lst.end (); ++it ) {

cout << *it << endl;
}

// range -based for loop:
for (int n : lst) { // shortcut syntax reads

cout << n << endl; // "for each int n in lst"
}

// mutate lst items or avoid copying each item
for (int &n : lst) { // using reference to avoid copying

n *= 2; // allow us to mutate the data too
} // our list now contains 6 4 2

}

Code 0.40

ere is the code to make all of the above work:

class List {
struct Node;
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Node * theList = nullptr ;
...
public :

class Iterator { // nested class
Node *p; // points to the current node;
public :

explicit Iterator (Node *p) : p{p} {} // ctor
int & operator *() const { // access data

return p->data;
}
Iterator & operator ++() { // advance iterator

p = p->next;
return *this;

}
bool operator ==( Iterator &other) const {

return p == other.p;
} // by implementing ==, we get != for free

}; // class Iterator

Iterator begin () const {
return Iterator { theList };

}
Iterator end () const {

return Iterator { nullptr };
}
// other list methods , like Big5

} // class List;

Discovery 0.25

Notice that the constructor of the Iterator is still public, so List client’s code can still create Iterator
objects directly:

List :: Iterator it = List :: Iterator { nullptr };

This violates encapsulation. Only begin() and end() should be allowed to create Iterators. If we
make the Iterator constructor private, then the client’s code cannot do this, but neither can List.

Theory 0.31: Friend

To give the List class privileged access to the Iterator class, we make the List a friend.
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Example 0.49

class List {
..;
public :

class Iterator {
private : // optional , private by default

Node *p;
explicit Iterator (Node *p) p: {p} {}; // private

friend class List; // gives List access to the
// private members of Iterator
// this line can be put anywhere

};
}

Now List can create Iterator objects, and the client code can only create Iterator by calling begin()

and end() .

Result 0.22

The Iterator class is saying that List is a friend and can be trusted to access the private members
correctly.

0.16.2 Nested Class

Example 0.50

--- class List
|
| --- class Node
| |
| -----
|
| --- class Iterator
| |
| -----
-----

These classes are “nested” (defined) inside the List class. Their names are List::Node and List::Iterator .
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Theory 0.32

At runtime, you create instances od these classes (objects), the objects can be related in many different
ways depending on how you use the classes.

Remark: Do not be confused by nested classes and think that creating a List object automatically creates
a Node object and an Iterator object.

Theory 0.33

Nested classes allow you to reuse class names (i.e. Iterator). They also allow you to create “local”
classes that are private and used internally as an implementation detail (i.e. Node).

Theory 0.34

An instance of a nested class has access to the private members (fields), and methods of its “wrapping”
outer class as long as it has a way to get to an outer object (e.g. through a pointer/ reference/ object).

0.17 Lecture 14

Lecture 14 - Tuesday, Jun 25

Theory 0.35

The range-based for loop is available for any class with

1. methods begin() and end() that produce iterators;

2. the iterator class must support the * , ++ , and != operators.

The compiler “re-writes” the for loop as a traditional for loop, with the begin() and end() , and
the * , ++ , and != operators.

0.17.1 Accessors and Mutators

Code 0.41

struct Vec {
private :

int x, y;
public :

int getX () const { return x;}; // accessor
void setX(const int new_x) {x = new_x }; // mutator

};
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What about operator<< ?
It needs access to x and y, but it cannot be a member function.

1. It could use the accessor methods to get x and y;

2. We could make it a friend function.

Example 0.51

struct Vec {
...
Friend ostream &operator <<( ostream &out , const Vec &v);

};

ostream &operator <<( ostream &out , const Vec &v) {
return out << v.x << ", " << v.y; // note access to private x, y

}

0.17.2 Equality for Our List Class

If we want to check if two Lists are equal, doing a length check first is quicker and more efficient.

Code 0.42

class List {
Node * theList ;
public :

auto operator <=>( const List &other) const {
if (! theList && !other. theList ) return strong - ordering :: equal;
if (! theList ) return strong - ordering :: less;
if (! other. theList ) return strong - ordering :: greater ;
return * theList <=> other. theList ; // Node <=> operator

}
bool operator ==( const List &other) const {

if ( length != other. length ) return false;
return (* this <=> other) == 0; // implemented ito <=> above

}
}

Discovery 0.26

You can implement both == and != operators if you want a custom != operator, but obviously you
don’t have to.
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0.17.3 System Modelling

Definition 0.23: UML

We will use the UML (Unified Modelling Language) diagram for showing the structure of a class
and the relationships to other classes. This diagram is called a class diagram.

Example 0.52: Model a class:

|-----------------------|
| Vec | --> class name
|-----------------------|
| -x: integer | --> fields :
| -y: integer | - for private ; + for public ; # for protected
|-----------------------|
| +getX (): integer | --> methods
| +getY (): integer |
| +setX(newX: integer ) |
| +setY(newY: integer ) |
|-----------------------|

0.17.4 Relationship: Compositon of Classes

Definition 0.24: Composition

Embedding one object (Vec) inside another (Basis) is called composition

Code 0.43

Recall

class Basis {
Vec v1 , v2;

};

A Basis is composed of 2 Vec’s. They are a part of a Basis, and that is their only purpose.

Result 0.23

Relationship: a Basis “owns” a Vec (actually it owns 2 of them).

Definition 0.25: “Own a”

If A owns a B, then typically:

1. B has no identity outside A (no independent existence);
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2. If A is destroyed, B is also destroyed;

3. If A is copied, B is also copied.

Example 0.53: UML - Owns a

0.17.5 Relationship: Aggregation

Definition 0.26: Aggregation, “Has a”

If A has a B, then typically:

1. B exists apart from its association with A;

2. If A is destroyed, B lives on;

3. If A is copied, B is not (shallow copy). Copies of A store the same B.

Example 0.54

Parts in a catalog, ducks in a pond.

Example 0.55: UML - Has a

Does using a pointer always mean non-ownership (i.e. aggregation)?
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Result 0.24

A Node owns the Nodes that follows it. An implementation of the Big 5 is a good sign of
ownership. These ownerships are implemented via pointers.

Discovery 0.27

Another way to view List and Node:

The diagram implies that List has a collection of Nodes and it responsible for all of them.

0.17.6 Relationship: Specialization (or Inheritance)

Suppose you want to track your collection of books:

Code 0.44

class Book {
string title , author ;
int length ; // number of pages
public :

Book (...);
...

};
class Text { class Comic {

string title , author ; string title , author ;
int length ; int length ;
string topic; string hero;
public : public :

Text (...); Comic (...);
... ...
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} }

Rather than using techniques like union or void * , notice that texts and comics are kinds of books.
They are Books with extra features.

Theory 0.36

We can model these using C++ inheritance.

Definition 0.27: Base Class and Derived Class

class Book { // base class (or superclass )
...

};
class Text : public Book { // derived class ( subclass )

string topic; // only the new fields
public Text (...)

};
class Comic : public Book { // derived class ( subclass )

string hero; // only the new fields
public Comic (...)

};

Theory 0.37

Derived classes inherit the fields and methods from the base class. So Text and Comic get title, author,
and length fields automatically.

Result 0.25: Layout in Memory

Book Text Comic
|-------| |-------| |-------|
|-title -| |-title -| |-title -|
|- author | |- author | |- author |
|- length | |- length | |- length |
|-------| |-topic -| |--hero -| --> extra fields are added

|-------| |-------| after base fields

Also, any methods that can be called on a Book can also be called on Text and Comic. Anything
private in Book cannot be seen outside of Book (except any friends of Book). Text and Comic

cannot access title, author, and length.
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Code 0.45

class Text : public Book {
...
Text( string title , string author , int length , string topic) :

title{title}, author { author }, length { length }, topic{topic}
}

This will not work because

1. title etc. are private and not accessible by Text. The MIL only lets you initialize your own fields;

2. Recall object creation steps (0.11):

(a) Space is allocated;

(b) The superclass part is constructed; (new to this case)

(c) Fields are constructed;

(d) Constructor body runs.

How do we initialize a Text object using the constructor?
Solution:

Code 0.46

class Text : public Book {
...
Text( string title , string author , int length , string topic) :

Book{title , author , length }, topic{topic} {}
ˆ step 2 ˆ step 3 ˆ step 4

}

0.18 Lecture 15

Lecture 15 - Thursday, Jun 27

0.18.1 Protected Visibility

If you want to give subclasses access to members but not any code outside the class hierarchy, you can use
protected visibility
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Code 0.47

class Book {
protected : // accessible to subclasses and sub -subclasses ,

// but no one else
string title , author ;
int length ;

};
class Text : public Book {

public :
void addAuthor {const string & newAuthor } {

author += ", " + newAuthor ; // author field is visible to Text
}

...
};

Theory 0.38

If we want to further protect our base class fields, we can use a protected mutator method:

Code 0.48

class Book {
... // fields are private
protected :

void setAuthor (const string & newAuthor ); // call this method to
// change author

publilc :
string getAuthor () const; // accessor method

};

Result 0.26: UML Diagram

The arrow shows the “is a” relationship of in-
heritance.
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0.18.2 Virtual Methods

Consider adding an isHeavy() method to Book, we will define it as follows:

-ordinary book: heavy means > 200 pages;
-text book: heavy means > 500 pages;
-comic book: heavy means > 30 pages;

Code 0.49

class Book {
...
bool isHeavy () const { return length > 200;}

};
class Comic : public Book {

...
bool isHeavy () const { return length > 30;} // assume we have access

}
etc.

Book b{"A small book", "Papa Smurf", 50}; // not heavy
Comic c{"A big comic", "Mr. Comic", 40, " Antman "}; // heavy

Book b = Comic {... , 40, ...};
cout b. isHeavy (); // Book. isHeavy () runs

Definition 0.28: Sliced

The Comic Object is sliced – the hero field is chopped off and the Comic is coerced into a Book.

Theory 0.39

When accessing objects through pointers, slicing doesn’t happen.

Example 0.56

Comic c{... , 40, ...}; Comic *cp = &c;
Book *bp = &c; Book &br = c;
cout << c. isHeavy () // true

<< cp -> isHeavy () // true
<< bp -> isHeavy () // false
<< br. isHeavy () // false
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Discovery 0.28

ur Comic Object is acting like a Book when we use a Book pointer or reference. This behaviour of the
object depends on what type of pointer (or reference) you access it through.

How do we make a Comic act like a Comic when pointed by a Book pointer?
Answer: Use virtual method.

Theory 0.40

Virtual Method – choose which class’ method to run based on the actual type of the object at runtime.

Code 0.50: Virtual & Override

class Book {
string title , author ;
protected :

int length ;
public :

...
virtual bool isHeavy () const { return length > 200;}

}
class Comic : public Book {

...
public :

bool isHeavy () const override { return length > 30;}
}

The override tells the compiler that we are explicitly overriding the method. It is optional.

Result 0.27

When having the keyword override , the compiler will check if there is actually such a virtual
method in the base class. If there isn’t, you get a compile error.

Now

Example 0.57

Comic c{... , 40, ...}; Comic *cp = &c;
Book *bp = &c; Book &br = c;
cout << c. isHeavy () // true

<< cp -> isHeavy () // true
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<< bp -> isHeavy () // true , becuz Comic version isHeavy () runs
<< br. isHeavy () // true , same reson

However, it is important to note that

Book b = c;

is still slicing. We copy the Comic fields into a Book object and run the Book version of isHeavy() .
Now we can have a collection of different types of Books:

Code 0.51

Book * myBooks [20]; // array of 20 Book*
...
fir (int i = 0; i < 20; ++i) {

cout << myBooks [i]-> isHeavy () << endl;
}

The correct version of isHeavy() will run for each one.

Definition 0.29: Polymorphism

Accomodating multiple types (Book, Text, Comic) under one abstraction (Book) is called polymor-
phism (“multiple forms”).

Discovery 0.29

This is why a function void f(istream &in) can be passed an ifstream – ifstream is a
subclass of istream .

0.18.3 Destructor Revisited

Code 0.52

class X {
int *x;
public :

X(int n) : x{new int[n]} {} // ctor
˜X() { delete [] x;}

};
class Y : public X {

int *y;
public :

Y(int m, int n) : X{n}, y{new int[m]} {}
˜Y() { delete [] y;}
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};

X *myX = new Y{10, 20};
...
delete myX;

This code leaks memory because delete myX calls ∼X() but not ∼Y() , so only x is freed, not y.

To solve the above issue, we need to make our destructor virtual , similar to how we made
isHeavy() virtual .

Code 0.53: Virtual Destructor

virtual ˜X() { delete [] x;}

Adding the keyword virtual causes the correct destructor to be called based on the actual type of
the object.

Theory 0.41: Object destruction follows these steps:

1. Destructor body runs;

2. Fields destructor run in reversed declaration order;

3. Repeat step 1-3 for the base class; (new!)

4. Space is deallocated.
The new step supports subclasses.

Result 0.28: ALWAYS make the destructor virtual

ALWAYS make the destructor virtual in classes that are meant to have subclasses, even if the destructor
doesn’t do anything.

Definition 0.30: Final

If a class is not meant to be subclassed, you can declare it final .

Example 0.58

class Y final : public X {
...

};

final makes sure that Y cannot be subclassed (so it is at the bottom of the hierarchy).
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0.18.4 Pure Virtual Methods and Abstract Classes

Code 0.54

class Student {
protected :

int numCourses ;
public :

virtual int fees () const = 0; // signals that fees () method
// has no implementation
// aka. pure virtual method
// makes Student abstract

...
};
class Regular : public Student {

public :
int fees () const override ; // computes fees for regular students

};
class Coop : public Student {

public :
int fees () const override ; // computes fees for Coop students

};

A class with one or more pure virtual methods cannot be instantiated:

Student s; // error! Student cannot be instantiated

Definition 0.31: Abstract Class

A class that can’t be instantiated is called an abstract class. Subclasses (of it) are also abstract
unless they implement ALL pure virtual methods.

0.19 Lecture 16

Lecture 16 - Tuesday, Jul 2

Example 0.59

An abstract class is generally used to provide a common set of fields and/ or methods for a series of
subclasses.

Definition 0.32: Concrete Class

Non-abstract classes are called concrete.
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Result 0.29

In UML we represent virtual and pure virtual methods using italics. We represent abstract classes by
italicizing the class name. We can also use asterisks to show this when italics are hard to do (i.e. when
write on paper).

0.19.1 Templates

Recall the List class we were building:

Code 0.55

class List {
struct Node {

int data; <-- data field defines what type of data we store
Node *next;

};
Node * theList ;

};

Theory 0.42

If we want to store something other than an int, we can turn this List class into a template class. A
template class is parameterized by one or more types.

Example 0.60

template <typename T> // <-- new line of code making List
// a template class

class List {
struct Node {

T data;
Node *next;

};
...
public :

class Iterator {
Node *p;
...
public :

T & operator *() const {...}
};
void addToFront (const T &data) {...}
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T &ith(int i) {...}
...

}

Possible client code:

List <int > ints; // creates a List object with T = int
List <string > strings ; // creates a List object with T = string
List <List <int >> loloi; // creates a List object with T = List <int >

ints. addToFront (5);
strings . addToFront ("hello world");
loloi. addToFront (ints );

for (List <int >:: Iterator it = ints.begin (); it != ints.end (); ++it) {
cout << *it << endl;

}
for (auto n : ints) {

cout << n << endl;
}

Theory 0.43

The compiler specializes the template into actual code as a source-level transformation and then com-
piles the resulting code as usual.

0.19.2 The Standard Template Library (STL)

Definition 0.33: STL

Has a large collection of useful templates. One example would be vector .
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Example 0.61: Vector

Dynamic length arrays:

import <vector >;
using namespace std;

vector <int > v1; // vector of ints. Creates an empty vector
vector <int > v2{4, 5} // creates a vector with 4 and 5 as its elements
vector <int > v2(4, 5) // creates a vector with 4 elements of value 5
vector . emplace_back (1); // addes the value 1 as an element
vector . push_back (2); // addes the value 2 as an element

vector v4{4, 5, 6, 7}; // compiler deduces the type int from
// the initialization list

for (int i = 0; i < v4.size (); ++i) { // method size () is num of ele
cout << v4[i] << endl;

}
for (vector <int >:: iterator it = v4.begin (); it != v4.end (); ++it) {

cout << *it << endl;
// lowercase i for iterator (it’s a std template lib)

}
for (int n : v) {

cout << n << endl;
}

// reverse iterator :
for (vector <int >:: reverse_iterator it = v4. rbegin ();

it != v4.rend (); ++it) {
cout << *it << endl;

}
// more useful methods :
v4.front (); // first element
v4.back (); // last element
v4. pop_back (); // removes the last element . void method

Discovery 0.30

Here is a good question about emplace back : link.

Theory 0.44

Vectors are guaranteed to be implemented internally as arrays.
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Result 0.30

Use vectors whenever you need a dynamic length array.

0.19.3 Removing Elements From a Vector

Code 0.56

for (auto it = v.begin (); it != v.end (); ++it) {
if (*it == 5) v.erase(it);

}

The above code is wrong. Consider a vector:

v: 1 | 5 | 5 | 2

In this case, after erase() , all the subsequent element are pushed forward by one spot, while our
iterator stays at v[1] , so after advancing the iterator, we miss removing the second 5.

Result 0.31

After an insertion or an erase, all iterators pointing after the point of insertion/ erase are considered
invalid and must be refreshed.

Example 0.62

So here is the correct implementation:

for (auto it = v.begin (); it != v.end (); ) {
if (*it == s) it = v.erase(it); // returns a new iterator

// to the point of erase
else ++it;

}

Note that we cannot use range-base for loop because in that case, the iterator is “hidden” from us, and
we cannot use the one returned by erase().

0.19.4 Design Patterns - Iterator Pattern

Example 0.63

class AbstractIterator {
public :

virtual int & operator *() const = 0;
virtual AbstractIterator & operator ++() = 0;
bool operator !=( const AbstractIterator &other) const = 0;
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virtual ˜ AbstractIterator ();
}

0.20 Lecture 17

Lecture 17 - Thursday, Jul 4

0.20.1 Observer Pattern

Definition 0.34

An observer pattern is used to implement a publish/ subscribe model.

1. One class generates/ updates data: subject/ publisher;

2. Many classes receive data and react to it: observer/ subscriber.

Result 0.32
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Theory 0.45: Sequence of calls:

1. Observers are attached to the subject indicating desire to be notified;

2. Subject’s state is updated;

3. Subject::notifyObserver() is called - it calls each observer’s notify() method;

4. Observer calls ConcreteSubject::getState() to query the state and react accordingly (may
be back to 2).

5. When observer shut dowsn or are no longer interested, they detach from the Subject.

Example 0.64: Actual Code in repository folder /24-observer

Here the HorseRace is a concrete subject, while the Bettor ’s are concrete observers. Black dimonds
beside TestHarness indicate composition, so the TestHarness is responsible for creating/ destroying
the HorseRace and Bettor objects.

The ∼Subject() is pure virtual, and this is what makes Subject abstract.
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Result 0.33: Important Points for Observer Pattern

1. The subject does not know anything about the observers other than the fact that they all have
the notify() method;

2. New types of observers can be created and added at any time without changing the code in the
Subject;

3. Order of notification is generally not guaranteed;

4. Subject controls the state. Observers query it. Attenatively the subject can push the data to the
observers;

5. State is not defined in the abstract base class Subject because it varies from one subject to the
next;

6. You can reuse subjects and observers independently of one another;

7. Concrete subject uses implementation inheritance to get the basic functionality of attaching,
detaching, and notifying “for free”;

8. Interface inheritance allows all subjects to be used interchangeably and same for observers.

0.20.2 Decorator Pattern

Definition 0.35: General Decorator Pattern UML

Concrete Decorators can add new behaviour and/ or new states.
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Code 0.57

In code, this looks like this:

Pizza *p = new CrustAndSauce ;
p = new StuffedCrust (p);
p = new Topping (" cheese ", p);
p = new Topping (" pepperoni ", p);
cout << "Your " << p->desc () << " pizza costs " << p->cost () << endl;

Discovery 0.31

1. Start with a CrustAndSauce object;

2. Decorate it with a StuffedCrust object;

3. . . .;

4. Call the cost() method which relied on delegation to add up all the costs.

Theory 0.46

A CrustAndSauce object is a Pizza (through inheritance).
A CrustAndSauce object wrapped in a decorator is still a Pizza.
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Code 0.58

class Pizza {
public :

virtual float cost () const = 0;
};
class CrustAndSauce : public Pizza {

public :
float cost () const override { return 5.99; }

};
class Decorator : public Pizza {

protected :
Pizza * component ;

public :
Decorator (Pizza *p) : component {p} {}
virtual ˜ Decorator () { delete component ; }

};
class StuffedCrust : public Decorator {

public :
StuffedCrust (Pizza *p) : Decorator {p} {}
float cost () const override { return component ->cost () + 2.69; }

}

Example 0.65: UML for our example

CrustAndSauce is a concrete Pizza class, it is the innermost object we want to add behaviour to. The
Decorator class is a Pizza class, but it has one more field - component.

The bottom three classes are decorators which are also Pizzas.
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Result 0.34: Important Points for Decorator Pattern

1. Decorator have the same supertype as the object they decorate;

2. You can use one or more decorators to wrap an object;

3. You can pass around a decorated object in place of the original object;

4. The decorator adds its own behaviour before and/ or after delegating to the object it decorates;

5. Objects can be decorated at any time so we can decorate an object at runtime;

6. The Decorator pattern is an alternative to subclassing for extending behaviour.

0.21 Lecture 18

Lecture 18 - Tuesday, Jul 9

When should classes be grouped together in a module, and when should they be in separate modules?
To answer this, we can explore two measures of design quality: coupling and cohesion.

0.21.1 Coupling

Definition 0.36: Coupling

Coupling refers to how much distinct program elements (classes, functions, modules) depend on one
another:

1. High coupling (tightly coupled) means that the elements are closely connected and changes in
one may have a ripple effect to others. This makes it harder to reuse individual elements.

2. Low coupling (loosely coupled) means that the elements are independent and changing in one
element has little effect on others.

Result 0.35

You do need some degree of coupling. Loosely coupled elements can interact, but they generally
have very little knowledge of each other. Design with loose coupling allow us to build flexi-
ble object-oriented systems that can handle change because they minimize the interdependence
between objects.

Example 0.66

Observer Pattern is a good example of low coupling.
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0.21.2 Cohesion

Definition 0.37: Cohesion

Cohesion refers to the degree to which elements of a module works together to fulfill a single, well-
defined purpose

1. High cohesion means that the elements are closely related and focus on a single purpose;

2. Low cohesion: the elements are loosely related and serve multiple purposes.

Discovery 0.32

The elements could be methods of a class or classes in a module, etc.

Result 0.36

Low cohesion indicates poorly organized code. It’s harder to reuse something without getting
other stuff bundled with it.

Result 0.37: Strive for low coupling and high cohesion

Our goal is strive for low coupling and high cohesion.

High cohesion is related to a design principle:

Theory 0.47: Single Responsibility Principle

A class should have only one reason to change.

This means that you should strive to design your classes so they only have one responsibility, one
reason to change. If a class does multiple things, there are more reasons to go back to that class and make
changes.

Changes ⇒ problems can creep in

When your class does multiple things, it might affect multiple aspects of your designs.

Example 0.67

The iterator pattern is a good example following the Single Responsibility Principle.
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0.21.3 What Should Go Into a Module

Code 0.59

class A { class B {
int x; char x;
B y; A y;

} }

This won’t compile because compiler don’t know how big A or B is.
The solution would be:

class B; // forward reference
class A {

int x;
B *y; // and change this to a pointer

};

Sometimes one class must come before another:

class C { };
class D : public C {...} // we must know the size of C

How should A and B be placed into modules?

Theory 0.48

Modules must be compiled in dependency order. You cannot forward declare another module or any
items within another module. Therefore A and B must reside in the same module. (This makes sense
since A and B are tightly coupled.)

0.21.4 Decoupling the User Interface (MVC)

What would be wrong with this?

Code 0.60

class ChessBoard { // has the core logic to maintain the
... // state of the Board
... cout << "Your Move" << endl;
...

};

This makes reuse harder because it interacts with the user directly.

class ChessBoard {
istream &in;
ostream &out;
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...

... cout << "Your Move" << endl;
};

Discovery 0.33

We could possibly put the user interaction in main , but that’s harder to reuse too.

Seperate the user interaction from the game state. Single Responsibility Principle is a guide.

Definition 0.38: Model View Controller (MVC)

The Model View Controller (MVC) is a architecture pattern:

This pattern separates the distinct responsibilities of

1. Model

(a) state (or data) and the application logic or rules that change the state;

(b) can have multiple views (e.g. text and graphics views);

(c) doesn’t need to know about their details.

2. View

(a) the presents the state in the user interface;

(b) gets the state from the model;

(c) model and view typically use Observer Pattern.

3. Controller

(a) mediates the flow of control between the model and view;

(b) accepts input (from the view or other sources) and converts it to actions on the model or
view.

Discovery 0.34

By decoupling application state, presentation, and control, MVC promotes reuse. CS 249 User Interface
spends a lot of time talking about MVC.
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0.21.5 Exception

Recall accessing elements of a vector v:

v[i] accesses the i-th element of v. No bounds checking! Unchecked.

v.at(i) accesses the i-th element of v. This checks if i is in bound. Bounds Checked.

What happens if you go out of bounds??

Example 0.68

In C, functions might use special return values or the global errno variable. This leads to awkward
programming and encourages programmers to ignore error checks.

Definition 0.39

In C++, when an error condition is detected, instead of returning normally, the function throws an
exception indicating what went wrong.

Theory 0.49

The fundamental idea behind exception is to separate detection of an error (which should be done in
the called function) from the handling of an error (which should be done in the calling function) while
ensuring that the detected error cannot be ignored.

Definition 0.40: “Handler”

When an exception is thrown, by default program execution stops, but we can write handlers to catch
the exceptions and deal with them.

Example 0.69

at() throws an exception of type std::out of range when i is out of bounds. Handle it as follows:
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Code 0.61

import <stdexcept >; // standard exception types

try { // smth that might throw an exception go in a try block
...
cout << v.at(i) << endl; // may throw an exception
cout << "This does not get printed ig exception is thrown ";

}
catch( out_of_range e) { // we watch the exception using a catch handler

cout << "Range Error: " << e.what () << endl;
}

e.what() gives the details about the error.

The exception causes execution to transfer to the catch block.

Consider another more complex example:

Example 0.70

void f() {
throw out_of_range {" function f"}; // returned by e.what ()

}
void g() { f(); } main
void h() { g(); } -> h

-> g
int main () { -> f

try { -> throw
h();

}
catch( out_of_range ) {...}

}

Theory 0.50

Control goes back up the call chain (called stack unwinding) untill a handler is found... all
the way back to main(). If there is no matching handler in the entire call chain, the program
terminates.

Theory 0.51

You can have more than one handler to catch different types of exceptions:
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Code 0.62

try {
...

}
catch ( out_of_range e) {...}
catch ( bad_alloc ) {...} // this is the exception that

// new throws when it fails
catch (...) {} // actual ‘‘...’’ denotes the catch -all handler

// catches any exception type

Theory 0.52

As part of stack unwinding, any stack-allocated objects are destroyed automatically (i.e. their destruc-
tors run.)

0.21.6 The Exception Object

out of range is a class. The statement

throw out_of_range {"f"}
\---------------/

// costructs the object with "f" as ctor args

Definition 0.41: Exception Object

This object is called the exception object. Catch handlers can access the exception object through
the parameter in the catch declaration.

What is the difference between:

catch( out_of_range e);

and

catch( out_of_range &e);

The first one catches by value while the second one catches by reference.

Result 0.38: Throw by value, catch by reference

In C++, we have a maxim “Throw by value, catch by reference”. Catching by reference is usually the
right thing to do.
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0.22 Lecture 19

Lecture 19 - Thursday, Jul 11

Code 0.63

Catch by value causes the exception object to be copied into the variable, which could cause slicing
(see more in Definition 0.28) if you throw a derived class, like Text but catch a base class like Book.
Catching exceptions by reference will not cause slicing.

Exception types are often part of a class hierarchy of exception classes. The std::out of range
class is part of an exception hierarchy in the std library.

Subclasses can add additional fields or new behaviour (such as capturing details about the specific
error that occurred).

0.22.1 Rethrowing an Exception

A handler can do part of the recovery job, i.e. executing some corrective code, and then it rethrow the
original exception object:

Code 0.64

try {
} catch( SomeExceptionType &e) { // recovery / clean up processing ...

throw; // no explicit object being thrown
}

or throw a new object:

try {
} catch ( SomeExceptionType &e){

...
throw e;
// or
throw SomeOtherExceptionType {...}

}
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Theory 0.53: throw object vs. throw

throw <object> discards the original exception object and creates and throws a new one. The code
above will throw either a SomeExceptionType object or a SomeOtherExceptionType object.
On the other hand, throw (without an object) rethrows the original exception object (without doing
any copying) and the original type of the exception is retained.

Discovery 0.35

Slicing could occur when you are throwing too.

Example 0.71

The object being thrown might be a subclass of SomeExceptionType rather than SomeExcep-
tionType itself.

Throw always throws an object with the same type as the static type of the expression.

Code 0.65

[Text] --> [Book]
-------------------------------------------------------------
throw Text {...}
catch(Book &e) { // e is actually a Text object

throw e; // object being thrown is sliced into a Book object
// because e is a book &

}

0.22.2 What can be thrown?

Result 0.39

You can throw anything that you want – you don’t have to throw objects.

Example 0.72: Folder: lectures/23-exceptions

Recursive Fib and Factorial functions that use throw to returnn values.

You can also define your own exception classes (or reuse existing ones):

Code 0.66

class BadInput {};
...
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try {
if (int n; !( cin >> n)) throw BadInput {};

} catch ( BadInput &) {
cerr << "Input not well - defined \n";

}

Discovery 0.36

Notice that the parameter name in the catch declaration is optional if you don’t need to refer to it.

0.22.3 Exceptions in Destructors

ADVICE: never let a dtor throw an exception. By default, the program will terminate immediately
( std::terminate will be called).

Theory 0.54

If a destructor is executed during unwinding while dealing with an exception and the destructor throws,
you would now have two active unhandled exceptions, and the program will terminate immediately.

0.22.4 Nested Exception Handlers

If is valid to nest a try...catch inside another try block or a catch handler.

Example 0.73

Both of the following are valid.

try {
...
try { \

... | --> nested try ... catch
} catch (...) {} /

} catch (...) {
try { \

... | --> nested try ... catch
} catch (...) {} /

}

0.22.5 Why Exceptions?

Result 0.40

Exception makes your code simpler, cleaner, and less likely to miss errors.

See http://isocpp.org/wiki/faq/exceptions (really good resource).
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0.22.6 Exception Safety (RAII)

Consider:

Code 0.67

void f() {
C c; // stack - allocated
C *cp = new C; // heap - allocated

g();

delete cp;
}

This looks correct without any memory leaks. However, what if g() throws?

Result 0.41

What is guaranteed? During stack unwinding, all stack-allocated data is cleaned up:

1. destructors run;

2. memory is reclaimed;

But heap-allocated memory is not reclaimed. Thus if g() throws, c is destroyed, but cp is not,
which causes memory leak.

What we could do instead is:

Code 0.68

void f() {
C c; // stack - allocated
C *cp = new C; // heap - allocated

try {
g();

} catch (...) {
delete cp;
throw;

}
delete cp;

}

We wrap the call to g() in an exception handler, but this is ugly and error-prone and code-duplication.
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How can we guarantee that something (i.e. delete cp ) will happen no matter how we exit f

(either normally or by exception)?
Thought: You can count on destructor for stack-allocated data to run, thus use stack-allocated

objects with destructors as much as possible. Use that to guarantee your advantage.

Theory 0.55: C++ Idiom

Resource Allocation Is Initialization – RAII
Interpretation: Every resource should be wrapped in a stack-allocated object, whose job is to release
the resource.

0.22.7 Smart Pointer

Example 0.74

{
ifstream f{"file.txt"};
...

}

Acquiring the resource (the file) happens by initializing the object f . The file is guaranteed to be
released (closed) when f goes out of scope.
This could also be done with dynamic memory:

import <memory >;

void f() { // function rewritten to use RAII
C c;
std :: unique_ptr <C> cp{new C}; // constructs C on heap ,

// return a ptr to it
g();

}

The unique ptr ’s destructor will delete the pointer, we can dereference the cp object just like a
regular pointer:

cp-> or *cp.

Definition 0.42: Smart Pointer

We call this a smart pointer because it automatically frees memory (dumb pointers don’t do
anything) when it goes out of scope.

Theory 0.56

Smart pointers should always be stack-allocated.
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Example 0.75

Another way to create a smart pointer object:

void f() {
std :: unique_ptr <C> cp = std :: make_unique <C >();

}

where std::make unique is the function, <C> is the type of pointer being wrapped, and what goes
inside the parentheses is the constructor arguments for C ’s constructor.
std::make unique internally calls new C... , forwarding the arguments in the parentheses to C ’s

constructor.

What if we try

Code 0.69

unique_ptr <C> cp{new C};
unique_ptr <C> cp2 = cp; // calling copy ctor to copy cp

We are tryping to copy a unique ptr , but we don’t want to delete the same ptr twice. Therefore
copying is disabled for unique ptr . They can only be moved.

Theory 0.57

If you need to copy pointers, you first need to answer the question of ownership:

1. Who will own the resource (who has the responsibility to free it);

2. That ptr should be a unique ptr object. All other ptrs should be raw pointers;

3. Can access the underlying raw pointer with cp.get() .

0.22.8 New Understanding of Pointers

This leads to a new understanding of pointers:

Result 0.42

1. unique ptr — indicates ownership;

2. raw ptr — indicate non-ownership, since the raw pointer is considered not to own the resource it
points at, you should not delete it;

3. moving a unique ptr (into or out of a function) — transferring ownership.
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0.23 Lecture 20

Lecture 20 - Tuesday, Jul 16

0.23.1 Pointers as Parameters

Moving a unique ptr into a function:

1. void f (unique ptr<C> p) ;
f will take over ownership of the object pointed to by p. Caller loses custody of object.

unique_ptr <C> cp {new C}; // cp manages the C object
f(std :: move(cp )); // transfers ownership of the

// managed object to f
// cp would now be ‘empty ’

2. void g (C *p) ; g will not take ownership of the object pointed to by p. Caller’s ownership of the
object does not change.

0.23.2 Pointers as Function Return Values

Moving a unique ptr out of a function:

1. unique ptr<C> f() ;
return by value is always a move, so f is handing over ownership of the C object to the caller;

2. C g() ;
the raw pointer is understood not to be deleted by the caller. It might be a pointer to non-heap data
or to heap data that someone else already owns.

0.23.3 Shared Ownership: the Shared Ptr

Definition 0.43: shared ptr

When you do need true shared ownership, i.e. any of several pointers might need to free the resource,
then we use a shared ptr<C> .

Example 0.76

{
auto p1 = std :: make_share <C >(); // allocates a C object on heap
if (...) {

auto p2 = p1; // two ptrs pointing at the same object
// copy is allowed

} // p2 runs out of scope , but object is not deleted yet
} // p1 goes out od scope , the object is deleted
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Theory 0.58

shared ptr maintains a reference count — a count of all shared pointers pointing at the same object.
Memory is freed when the number of shared ptr ’s pointing to it reaches 0.

Result 0.43

There are three types of pointers: (raw, unique, and shared). They accurately reflects the pointer’s
onwership role. This leads to dramatically fewer opportunities for memory leaks.

0.23.4 STL Maps

Definition 0.44: Maps

Maps are also known as associative arrays or dictionaries. They are very useful container type. They
store (key, value) pairs, and the key in a map is unique, while values can be set and updated.

Code 0.70

import <map >;

std ::map <string , int > m; // constructs an empty map
m["a"] = 2;
m["b"] = 3;
cout << m["a"] << endl; // prints 2
cout << m["b"] << endl; // prints 3
cout << m["c"] << endl; // if key is not found , it is inserted and

// the value is default constructed
m.erase("a"); // removes the (key , value) pair from map
if (m.count("b")); // 0 = not found; 1 = found

// interate a map , in sorted key order. Maps store keys in sorted order.
for (auto &p : m) cout << p.first << "=" << p. second << endl;

// p’s type here is std ::pair <string , int > &
// (pair is defined in <utility >):
struct Pair {

K first;
V second ;

}

// alternatively
for (auto &[key , value] : m) cout << key << "=" << value << endl;
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Definition 0.45: Structured Binding

The last iterating approach is called structured binding. Decomposes the pair into two local
variables, called key and value

Discovery 0.37

Notice that key and value are references, so we can actually the value using the variable.
However, the key cannot be altered.

Theory 0.59

These structured bindings can be used on any structure (class) type with all fields.

Example 0.77

Vec v{1, 2}; // assuming public fields
auto [x, y] = v; // x = 1, y = 2

Example 0.78: Using on stack arrays where size is known

int a[] = {20, 30, 40};
auto [x, y, z] = a; // x = 20, y = 30, z = 40

0.23.5 Inheritancey and Copy/ Move

When you have an inheritance hierarchy, you need to do a few special things with your copy/ move operations.

Code 0.71

class Book {
string title , author ;
int length ;

public :
// has copy/ move ctors and copy/ move assignment

};
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class Text : public Book {
string topic;

public :
// does not define copy/ move operations

}

Text t1{" Algorithms ", "CLRS", 500, "CS"};
Text t2 = t1;

This copy initialization calls Book’s copy ctor and then goes field-by-field (i.e. default behaviour) for
Text part. The same is true for other compiler-provided operation.
If we were to write our own, they would look like this (note: they are equivalent to the compiler-provided
ones):

// copy ctor
Text :: Text(const Text &other) : Book{other}, topic{other.topic} {}

// copy assignment
Text &Text :: operator =( const Text &other) {

Book :: operator =( other ); // invoke superclass ’s copy ass
topic = other.topic; // copy text - specific fields
return *this;

}

// move ctor
Text :: Text(Text && other)

: Book{std :: move(other )}, topic{std :: move(other.topic )} {}
// ˆ stealing data from other ˆ

// move assignment
Text &Text :: operator =( Text && other) {

Book :: operator =( std :: move(other )); // invoke superclass ’s move ass
topic = std :: move(other.topic ); // move text - specific fields
return *this;

}

Theory 0.60

Even though other “points” at an rvalue, other itself is an lvalue (so is other.topic), therefore we
use std::move(x) to force an lvalue of x to be treated as an rvalue, so the move operations run
instead of the copy operations.
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Definition 0.46: lvalue — locater value

An lvalue is anything that:

1. can appear on the left hand side of an assignment statement;

2. denotes a storage location;

3. has a name;

4. allows you to take its address using the address-of-operator.

Definition 0.47: rvalue

An rvalue is an temporary object who has none of the properties an lvalue possesses.

Result 0.44

The above is the general pattern for subclass copy/ move operations. Specialize as needed for other
classes.

0.23.6 Preventing Partial and Mixed Assignment

Now consider:

Example 0.79

Text t1 {...};
Text t2 {...};
Book *pb1 = &t1;
Book *pb2 = &t2;

What if we do:

*pb1 = *pb2; // we expect this to be equivalent to t1 = t2
// but it’s actually not

In fact, Book::operator=() , and the result is partial assignment (Only the Book portion is copied
over while the Text portion stays unchanged).

Could we make operator = virtual?
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Code 0.72

class Book {
...
public :

virtual Book & operator =( const Book &other) {...}
};
class Text : public Book {

...
virtual Text & operator =( const Text &other) override {...}

}

The above won’t even compile because the parameter type doesn’t match. Suppose we try:

class Text : public Book {
...
virtual Text & operator =( const Book &other) override {...}

}

This now will compile, but now this is still problematic because this version would except any kind of
Book on the right hand side of an assignment (a Text object, but also a Book or a Comic).

Definition 0.48: Mixed Assignment

The above is called mixed assignment, which should not be allowed between objects that have
different “shapes” (or data fields).
Remark: for a more in-depth treatment of this topic, check out: this link.

Result 0.45

1. If operator=() is non-virtual, we get partial assignment when assigning through base class
pointers;

2. If operator=() is virtual, the compiler will allow mixed assignmnet.

0.24 Lecture 21

Lecture 21 - Thursday, Jul 18

Continue from the last lecture. Our solution to this problem (partial and mixed assignment) is to
make all superclasses abstract (making all non-leaf classes abstract).

Result 0.46

Rewrite our Book hierarchy:
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We introduce a new supercass that has the common features of Book, Text, and Comic, and we make
it abstract.
This eliminates the need to allow assignment between Book objects (i.e. when Book was the base class,
it was also a concrete object).
But this means we have to change our code a little bit:

Code 0.73

class AbstractBook {
string title , author ;
int length ;

protected :
AbstractBook & operator =( const AbstractBook &other ); // not virtual

public :
AbstractBook (...);
virtual ˜ AbstractBook () = 0; // need at least one pure virtual method

// use the destructor if don ’t have one
}
class Book : public AbstractBook {

public :
...
Book & operator =( const Book &other) { // Book -to -Book ass (same as b4)

AbstractBook :: operator =( other );
return *this;

}
}
class Text : public AbstractBook {

public :
...
Text & operator =( const Text &other) {

AbstractBook :: operator =( other );
topic = other.topic;
return *this;

}
}

This solution gives you everthing you need:

1. you can assign “like” object: b1 = b2 , t1 = t2 , or c1 = c2 ;

2. Partial and mixed assignment are prohibited;

3. Assignment through base class pointers is prohibited (avoiding unintentional partial and mixed
assignmnet);

102



4. Derived class assignment operators may call the assignment operator in base class;

Theory 0.61

When you have a pure vitual destructor, it must be implemented even though it’s pure virtual, or your
program will not link. Most pure virtual functions are never implemented, but pure virtual destructor is
a special case. (The subclass destructor will call the base class destructor, so it must exist in program.)

0.24.1 Casting

Recall C-style casting:

double d = 3.14;
int x = (int)d;

Node n;
int *np = (int *)&n; // force C++ to treate a node ptr a an int ptr

Theory 0.62

Casting should be avoided, in particular, C-style casts should be avoided in C++.
Aside: If you must casr, C++ provides casting operations.

Code 0.74

1. static cast — this is for “sensible casts” that have well-defined semantics:

Example 0.80

(a) double to int :

f(int x);
f( double d);

double d;
f( static_cast <int >(d)); // call int version of f

(b) superclass to subclass pointer:

Book *b = new Text {...};
Text *t = static_cast <Text *>(b);

You are taking the responsibility that b actually points to a Text object. You are telling
the compiler “trust me”

This will invoke a conversion constructor if one exists (recall this is a one-argument constructor):
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Discovery 0.38

struct Vec {
int x, y;
explicit Vec(int n) : x{n}, y{n} {}

}

Vec v = static_cast <Vec >(5); // invokes the "int to Vec"
// conversion constructor

If you try to do a static cast but it is not a valid conversion (the constructor indtead does not
exist), you would get a compiler error.

Code 0.75

2 reinterpret cast — unsafe, implementation-dependent, “weird” conversions. Most uses of
reinterpret cast result in undefined behaviour.

Student s;
Turtle *t = reinterpret_cast < Turtle *>(&s); // forces a Student to be

// treated as a Turtle

Tells the compiler to treate the expression as the indicated type. No code (CPU instructions) are
generated. Nothing happens at runtime.

Code 0.76

3 const cast — is for converting between const and non-const. This is the only C++ cast that can
“cast away const”.

void g(int *p);
void f(const int *p) { // p is a ptr to a const int

g(p); // compiler error , invalid conversion
// of const int * to int *

g(const_cast <int *>(p)); // compile just fine , we know that
// g will not modify the int

}

Code 0.77

4 dynamic cast — safely converts pointers and references to object up and down the inheritance
hierarchy.

Book *bp = ...;
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Text *tp = static_cast <Text *>(bp); // not sure if safe , depends on
// what bp is pointing to.
// If its not a Text ,
// we get undefined behaviour .

It would be better to do a tentative cast: try it and see if it succeeds.

Book *bp = ...;
Text *tp = dynamic_cast <Text *>(bp); // attempt cast ,

// returns nullptr if invalid
if (tp) {

cout << tp -> getTopic () << endl;
} else {

cout << "Not a Text" << endl;
}

If the cast works, then tp points to the object, otherwise get nullptr.

Theory 0.63

There are smart pointer versions of these, but they are shared pointers instead of unique pointers, and
they are functions:

1. static pointer cast ;

2. reinterpret pointer cast ;

3. const pointer cast ;

4. dynamic pointer cast ;

The functions, defined in <memory> , cast shared ptrs .

Example 0.81: Dynamic cast also works on references

Text t {...};
Book &b = t;
Text &t2 = dynamic_cast <Text &>(b);

If b points to a Text, then t2 is a reference to the same Text. Otherwise, because there is no such
thing as a “null reference”, std::bad cast is thrown.

Theory 0.64

Dynamic casting only works on classes with at least one virtual method.
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0.24.2 Static Fields and Methods

Definition 0.49: Static Members

Static members (fields and methods in a class) are associated with the class itself, and not with any
particular instance (object) of the class.

Example 0.82

struct Student {
...
inline static int numInstances = 0; // inline lets u initialize

// it inline in your class
student (...) : ... {

++ numInstances ;
}

}

cout << Student :: numInstances << endl;

Definition 0.50: Static member function

Static member functions/ methods don’t depend on a specific instance for their computation
(don’t have a this parameter).

Example 0.83

struct Student {
...
static void howMany () {

cout << numInstances << endl;
}
...

}

Student s1 {...};
Student :: howMany (); // 2

0.24.3 Factory Method Pattern

Suppose we have a problem: we want to write a video game with two kinds of enemies: turtles and bullets.
The system sends turtles and bullets our way, but bullets become more frequent in later levels.
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We don’t want to hardcode the enemy-generation policy. It should be flexible at runtime.
We will create a Factory Method in Level that creates enemies:

Code 0.78

class Level {
public :

virtual Enemy * createEnemy () = 0; // factory method
...

};

we can have different policies by creating subclasses:

class Easy : public Level {
public :

Enemy * createEnemy () override {
// creete mostly turtles

}
};
class Hard : public Level {

public :
Enemy * createEnemy () override {

// creete mostly bullets
}

}

As a result, we can switch policy at runtime:

Level * easyLvl = new Easy;
Level * hardLvl = new Hard;

Level * currentLvl = easyLvl ; // start easy;

while (true) {
...
if (...) currentLvl = hardLvl ; // at some point we switch
Enemy *enemy = current -> createEnemy (); // factory method

}

0.25 Lecture 22

Lecture 22 - Tuesday, Jul 23
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Definition 0.51: Factory Method Pattern

The Factory Method Pattern defines on interface for creating an object, but lets subclasses decide
which class to instantiate. Factory method lets a class defer instantiation to subclasses.

Definition 0.52

This pattern is also known as the virtual construct pattern because the pattern that creates the
objects is virtual.

Result 0.47: Important

Important Points:

1. Factory method relies on inheritance: object creation is delegated to subclasses, which implement
the factory method to create objects;

2. This pattern promotes base coupling by reducing the dependency of your application on concrete
classes. Your application only depends on the abstract interface, not on specific concrete classes.

Another example of the oo guiding principle of “program to interfaces, not implementations”.

Theory 0.65

Abstract base classes define the interface. Your client code should be written to use base class pointers
and call the methods in the base class interface. The interface is the abstraction. Concrete subclasses
can be swapped in and out to provide a variety of behaviours for this abstraction. Promotes loose
coupling.

0.25.1 Exception Safety Guarantees
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Definition 0.53

This means: “if program execution leaves a function because of an exception, that the program is not
left in a broken or unusable state. ”

Theory 0.66

Specifically, the levels of exception safety for a function f (in decreasing order of safety) are:

1. No-throw Guarantee: f promises to never throw or propagate an exception and will always
complete successfully. If an exception occurs internally, it will be handed internally and won’t
be observed by clients. If f can’t fully accomplish its tasks, it may indicate failure in some other
ways (such as setting an internal flag or returning a result code).

2. Strong Guarantee: If f throws or propagates an exception, the state of the program will be as
if f had never been called. If f changes some state, it must undo all of those changes to restore
the original state before throwing the exception. In other words, from the outside, it must appear
that either:

(a) f succeded in doing everything it was asked to do (normal exit), or;

(b) nothing happened except an exception was thrown indicating error.

3. Basic Guarantee: If f throws or propagates an exception, the program will be in some valid,
maybe unspecified, state. No resources are leaked, no corrupted data structures, and all classes
invariantes are intact.

4. No Exception Safety: f makes none of the above guaratnees.

Example 0.84: No-throw Guarantee

1. Pointer assignment;

2. delete (to delete an object), recall that destructors should never throw exceptions;

3. int i; cin >> i;

If not successful, this sets the fail() flag.

4. Lots of built-in facilities in C++ provide guarantee, they will never throw.

Example 0.85: Basic Guarantee

class Node {
...
Node & operator =( const Node &other) { // copy ass

if (this == &other) return *this;
delete next;
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next = nullptr ; // removes the dangling ptr
next = other.next ? new Node {* other.next} : nullptr ; // may throw
data = other.data;
return *this;

}
};

Notice that that line of code may throw because it is a copy constructor. If it does, next stays as
nullptr .

Example 0.86: Strong Guarantee

class A {
public :

void g(); // offers the strong guarantee , may throw
};
class B {

public :
void h(); // offers the strong guarantee , may throw

};

class C {
A a;
B b;

public :
void f() {

a.g();
b.h();

}
};

What safety level does f offer?

1. If a.g() throws, then any changes it made are “undone”, and then f propogates the exception.
At this point we have a strong guarantee.

2. If b.h() throws, the effects of a.g() must be undone to have f offer the strong guarantee,
which is hard or even impossible if a.g() has non-local side effects.

if A::g() or B::h() only have local side effects (they only change themselves), we can rewrite f to
offer the strong guarantee. One way to do this is to use a copy-swap idiom:

void f() {
A tempa = a; // create a copy of a
B tempb = b; // create a copy of b
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tempa.g(); // if they throw , the original are still intact
tempb.h();

a = tempa; // swap our a and b with modified ones
b = tempb;

}

However, this is only mostly correct. The last line is the problem: If it throws (assignment operations
could throw), we have already partially updated our state (a has been updated but not b).

It would be better if the last two lines will guarantee not to throw. Reacall that assigning
pointers can never throw.

0.25.2 pImpl Idiom

Code 0.79: Access C’s internal state through a pointer — pImpl idiom

struct CImpl {
A a;
B b;

};
class C {

// construct CImpl on the heap but using a smart ptr to manage
unique_ptr <CImpl > pImpl{new CImpl };
public :

void f() {
// copy our state using Cimpl ’s copy ctor
auto temp = make_unique <CImpl >(* pImpl );

temp ->a.g();
temp ->b.h()

// swapping ptrs or unique_ptrs is no -throw!
std :: swap(pImpl , temp );

}
};

Now f offers the strong guarantee. It guarantees that if f throws an exception, the internal state of
the C object is as if f had never run.
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Discovery 0.39

Note that if A::g() or B::h() offer no exception safety guarantee, then in general, neither can
C::f() .

0.25.3 Exception Safety and the Standard Template Library : Vector

Definition 0.54

Remember that the vector class:

1. encapsulates a heap allocated array;

2. when a stack-allocated vector goes out of scope or a heap-allocated vector is deleted, the internal
array is freed and the objects in the vector are destroyed (if applicable).

Example 0.87

void f() {
vector <C> v1; // vector of objects
vector <C *> v2; // vector of ptrs
vector <unique_ptr <C>> v3; // vector of smart ptr objects
...

}

When the function ends, v1, v2, and v3 go out of scope:

1. v1: C destructor runs on all objects in the vector;

2. v2: ptrs don’t have destructors, so objects are not deleted. The vector v2 is not considered as
owning the objects.

3. v3: unique ptr destructor runs on all objects, which deletes each smart pointer’s C object. Don’t
need an explicit delete statement.

Result 0.48

In summary,

1. vector<C> — owns the objects;

2. vector<C *> — does not own the objects;

3. vector<unique ptr<C>> — owns the objects.

How does vector provide the strong guarantee?
Consider emplace back .
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Example 0.88

If the array is full (size == capacity )
allocate a new , larger array

if allocation fails
the old array is still intact
exits with exception

copy the objects over (using copy ctor)
if copy ctor throws , need to undo the work so far:

delete objects already copied
delete new array
old array is still intact
exit with an exception

delete the old array and the old objects
exit successfully .

0.26 Lecture 23

Lecture 23 - Thursday, Jul 25

Result 0.49

The strong guarantee comes at a price: copying is expensive, and the old objects will just be thrown
away, so it is wasteful.

Wouldn’t moving the objects be more efficient?

1. allocate the new array;

2. move the objects over (move constructor);

3. delete the old array.

Discovery 0.40

If a move constructor throws, then emplace back cannot offer the strong guarantee because the
objects that have been moved over will no longer be intact.

Definition 0.55

But if the move constructor offers the no-throw guarantee, then emplace back can and will use the
move constructor (faster). Otherwise it will use the copy constructor (slower).
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Code 0.80

class C {
public :

C(C &&) noexcept {...} // noexcept shows we are offering
// the no -throw guarantee

C & operator =(C &&) noexcept {}
}

If you know that a function will never throw or propagate an exception, declare it noexcept. This
facilitates optimization. At a minimum, moves should be noexcept.

0.26.1 Template Method Design Pattern

Definition 0.56: Template Method

The template method pattern can be used when we want subclasses to override some of the super-
class behaviour, but other aspects must stay the same.

Example 0.89

noexcept.

class Turtle {
public :

void draw () {
drawHead ();
drawShell ();
drawFeet ();

}
private :

void drawHead () {...}
virtual void drawShell () = 0; // virtual method can be private
void drawFeet () {...}

};
class RedTurtle : public Turtle {

void drawShell () override { /* draw red shell; */ }
};
class GreenTurtle : public Turtle {

void drawShell () override { /* draw green shell; */ }
};

The part that must stay the same is the way the turtle is drawn. Subclasses can only change the way
the shell is drawn.
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Theory 0.67

This pattern is often used to allow subclasses to customize or provide an implementation for steps of an
algorithm. The overall algorithm is implemented in the base class as a template method — provides
a template (or the steps) of the algorithm:

1. draw is the template method;

2. drawHead , drawShell , and drawFeet are the steps;

3. Turtle controls the overall algorithm, but allows the subclasses to “customize” various steps,
like drawShell .

Definition 0.57: Template Method

Defines the skeleton of an algorithm in a method, deferring some steps to subclasses. Subclasses can
redefine certain steps without changing the algorithm’s structure.

Result 0.50: Non-virtual Interface (NVI) Idiom

Template method leads into another C++ idiom, the Non-virtual Interface (NVI) Idiom

0.26.2 Non-virtual Interface (NVI) Idiom

Discovery 0.41

public virtual method is really two things:

1. public: an interface for the client
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• promises certain behaviours to the client, such as pre- and post- conditions, invariants, etc.

2. virtual: an interface for subclasses

• behaviour can be replaced with anything the subclass wants

These are at odds with one another — making promises that subclasses can break.

Theory 0.68: NVI to the rescue

1. All public methods should be non-virtual;

2. All virtual methods should be private, or at the very least, protected.
This exposes the non-virtual methods to the clients and provides virtual methods for the

subclasses to replace or override certain behaviours (just as template methods).

Example 0.90

class DigitalMedia { // ABC ( Abstract Base Class) defines
// a common interface for playing digital media

public :
virtual void play () = 0;

};

Translated into NVI:

class DigitalMedia {
public :

void play () {
doPlay ();

}
private :

virtual void doPlay () = 0;
};

Now if we need to exert extra control over play(), we can do it:

1. we could later decide to add before/ after code around doPlay() that subclasses cannot change
(e.g. check copy right before, or update a play count after).

2. we can also add “hooks” by calling additional virtual methods from play (e.g. showCoverArt()).

3. we can do all of this without changing the public interface.

It is much easier to take this kind of control over our virtual methods from the beginning than to
try take back control over them later.
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Code 0.81

The NVI idiom extends the template methods by providing every virtual method inside a non-virtual
wrapper. (This is actaully how our Turtle example was structured.) There is essentially no disadvantage
from a performance perspective because a good compiler can optimize away the extra function call.

0.26.3 Template Functions

Similar to template classes, we can create template functions that are parameterized by one more more types.

Code 0.82

template <typename T>
T min(T x, T y) {

return x < y ? x : y;
}

// using it with different types:
int i1 = ..., i2 = ...;
int i = min(i1 , i2); // T = min

double d1 = ..., d2 = ...;
double d = min(d1 , d2); // T = double

Theory 0.69

C++ can infer T from the types of the arguments.

Example 0.91

If C++ cannot determine T, for example if a function has no arguments, you could tell it explicitly:

z = min <int >(x, y); // explicitly specifying the type of T

Discovery 0.42

For what types T can min be used? In other words, for what types does the body of min compile?
Answer : for any type for which operator< is defined.

We can generalize a function by making the types of its parameters template arguments:

Code 0.83

// sometimes you may see class instead of typename ,
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// they are interchangeable to compiler
template <typename Iter , typename Fn >
void for_each (Iter start , Iter finish , Fn f) {

while (start != finish ) {
f(* start );
++ start;

} // while loop
} // function

Iter can be any type that supports != , * , and ++ , including raw pointers. And f can be any
function that accepts the type returned by the iterator’s operator∗.

void writeOut (int n) { cout << n << endl; }
...
int a[] = {1, 2, 3, 4, 5};
for_each (a, a + 5, writeOut ); // prints the array;

// a+5 is just simple ptr arithmetic

0.26.4 The Algorithm Library (STL)

Definition 0.58: STL Algorithm Library

The STL Algorithm Library is a suite of template functions ( import <algorithm>; ) many of which
work with iterators.

Example 0.92

1. for each — as described above;

2. find — search for a value;

Code 0.84

template <typename Iter , typename T>
Iter find(Iter first , Iter last , const T &val) {

// returns an iterator to the first element in
// [first , last) matching val or last if val is not found

}

3. count — like find(), but instead returns the number of occurrences of val;

4. copy — copies one container range to another.

118



Code 0.85

template <typename InIter , typename OutIter >
OutIter copy( InIter first , InIter last , OutIter result ) {

// copies from the range [first , last) to [result , ...)
// Note: copy does not allocate new memory ,
// the output container must have the space available

}

// example
vector v{1, 2, 3, 4, 5, 6, 7};
vector <int > w(4); // space for 4 elements
copy(v.begin () +1, v.begin () +5, w.begin ()); // w = {2, 3, 4, 5}

0.27 Lecture 24

Lecture 24 - Tuesday, Jul 30

Example 0.93

1. transform — transforms values using a user-defined function

Code 0.86

template < typename InIter , typename OutIter , typename Fn >
OutIter transform (int first , InIter last , OutIter result , Fn f) {

while (first != last) {
* result = f(* first );
++ first;
++ result ;

}
return result ;

}

// Example :
int add1(int n) { return n+1; }
...
vector v{2, 3, 5, 7, 11};
vector <int > w(v.size ()); // create a vector of zeros size matching v
transform (v.begin (), v.end (), w.begin (), add1 ); // w = {3, 4, 6, 8, 12}
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0.27.1 Function Objects

What can we use for f in transform? We have to see how f is used in transform:

Code 0.87

* result = f(* first );

f can be anything that can be called as a function with the appropriate parameter and return types.

Theory 0.70

We can write an operator() method in a class ( operator() is the function call operator).

Example 0.94

class Plus1 {
public :

int operator ()( int n) { return n+1; }
};
Plus1 p; // constructs a Plus1 object
p(4); // uses the object like a function , producing 5

transform (v.begin (), v.end (), w.begin (), p); // using the object as a fn

Plus1 can be easily generalized:

class Plus {
int m;

public :
Plus(int m) : m{m} {}
int operator ()( int n) { return n+m; }

};
Plus p{7}; // constructs a Plus object
p(4); // uses the object like a function , producing 11

transform (... , ..., ..., Plus {1}); // last arg is ctor call

Definition 0.59: Function Objects

Instances of Plus1 and Plus are called function objects — objects that can behave like a function
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Result 0.51

Advantages of function objects are: they can be configured with contructors and can maintain state.

Code 0.88

class IncreasingPlus {
int m = 0;
public :

int operator ()( int n) { return n + (m++); }
void reset () { m = 0; }

};
vector <int >(5, 0); // creates a vector of 5 int values of 0
vector <int > w(v.size ()); // destination vector
transform (... , IncreasingPlus {}); // w = {0, 1, 2, 3, 4}

Discovery 0.43

Function objects are used extensively in the STL. We use them to specify what we are searching for in
search functions (such as find if ), for defining sort criteria (for function sort), etc.

Example 0.95: Sorting objects by different criteria

struct Person {
string name;
string address ;

};
vector <Person > v;

sort(v.begin (), v.end (), compareByName {});
sort(v.begin (), v.end (), compareByAddress {});

Then we can define function objects:

struct compareByName {
bool operator ()( const Person &a, const Person &b) const {

return a.name < b.name;
}

};
struct compareByAddress {

// same as above
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return a. address < b. address ;
};

0.27.2 Lambdas

Definition 0.60: Lambda expressions

Lambda expressions can be a convenient shorthand for function objects or functions.

Example 0.96

Consider the question: how many ints in a vector are even?

Code 0.89

vector <int > v;
...
bool even(int n) { return n % 2 == 0; }
...
int num_evens = count_if (v.begin (), v.end (), even ); // using a function

Using a lambda expression instead:

Code 0.90

int num_evens = count_if (v.begin (), v.end (), []( int n){ return n%2 == 0;});

Definition 0.61

A lambda expression is an unnamed function, specified right where it is needed. The square brackets
is known as a lambda introducer, and there are more other lambda introducers:

1. [] — lambda introducer, ordinary function that can access its own parameters, its own local
variables, and anything in the global scope;

2. [&] — can use names from its enclosing scope, by reference;

3. [=] — can use names from its enclosing scope, by reference or by value (accessing copies of
variables from the enclosing scope).

0.27.3 More Uses of Iterators
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Definition 0.62: Iterator

An iterator is anything that supports the opreations * , ++ , and != . We can apply the notion of
an iterator to other data sources or destinations such as streams.

Example 0.97

import <iostream >;
import <iterator >;

ostream_iterator <int > osi { cout , " " };
// writes ints to cout , ctor takes an output stream
// and an optional string to be printed after each value

*osi = 13; // writes "13 " to cout
*osi = 42; // writes "42 " to cout

// we dont need to advance the iterator ;
// ++ osi does nothing

vector <int > v{1, 2, 3, 4, 5};
copy(v.begin (), v.end (), osi ); // write "1 2 3 4 5 " to cout

istream_iterator <int > isi { cin }; // reads from cin
int i1 = *isi; // read value
++ isi; // advance iterator
int i2 = *isi;

Now consider

vector <int > w;
copy(v.begin (), v.end (), back_inserter (w));
// constructs an iterator that calls push_back on w
// every time operator * is assigned

Remember, copy doesn’t allocate space in w, it can’t because it doesn’t even know what kind of
container w iterates over. The back inserter inserts a new item in w each time. Now v is copied to
the end of w by adding new items. Back inserters are available for any container with a push back
method.

0.27.4 Is Dynamic Casting Good Style?

Recall dynamic cast . You can use it to make decisions based on an object’s run time type information
(RTTI):
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Example 0.98

void whatIsIt (Book *b) {
if ( dynamic_cast <Text *>(b)) { // nullptr if unsuccessful

cout << "Text";
} else if ( dynamic_cast <Comic *>(b)) {

cout << "Comic";
} else if (b) {

cout << " Normal Book";
} else {

cout << " Nothing ";
}

}

Discovery 0.44

Notice that code like this is tightly coupled to the Book hierarchy, and it may indicate bad design.
Why? Consider what happens if we introduce a new subclass of Book. We need to add a new
case, or else it doesn’t work anymore.

Theory 0.71

It is better to use virtual methods.

Code 0.91

Fix the whatIsIt example:

class Book {
...
virtual string identify () { return " Normal Book"; }

};
// Override identify in Text and Comic

void whatIsIt (Book *) [
if (b) {

cout << b-> identify ();
} else {

cout << " Nothing ";
}

]

This works by creating an interface function that is uniform across all Book types. Each subclass
implements the appropriate logic for the virtual method so you don’t need to write code like above
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that uses dynamic cast .

However, not all dynamic casting are bad design:

Definition 0.63: Dynamic reference casting

Dynamic reference casting offers a possible solution to the polymorphic assignment problem (e.g.
if we want to allow assignment through base class pointers).

Code 0.92

Recall

Book *pb1 = ...;
Book *pb2 = ...;
*pb1 = *pb2;

We would expect this to work for “like” objects (b1 = b2, t1 = t2) but not “unlike” objects (b1 = t1).
To make this work,

class Book {
puclib :

virtual Book operator =( const Book &other ); // virtual
};
class Text : public Book {

public :
Text & operator =( const Book &other) override { // override

const Text & textother = dynamic_cast <const Text &>( other );
// implements a run time check if the object copied
// is actually a Text. Throws if it isn ’t.
// Prevents " unlike " assignment .

Book :: operator =( other );
topic = textother .topic;
return *this;

}
}
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